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A Fluid–Structure Interaction
Study on a Bionic Fish Fin
With Non-Uniform Stiffness
Distribution
In this paper, the propulsive performance of a caudal peduncle-fin swimmer mimicking a
bio-inspired robotic fish model is numerically studied using a fully coupled FSI solver.
The model consists of a rigid peduncle and a flexible fin which pitches in a uniform flow.
The flexible fin is modeled as a thin plate assigned with non-uniformly distributed stiffness.
A finite volume method based in-house Navier–Stokes solver is used to solve the fluid equa-
tions, while the fin deformation is resolved using a finite element code. The effect of the fin
flexibility on the propulsive performance is investigated. The numerical results indicate that
compliance has a significant influence on performance. Under the parameters studied in
this paper, the medium flexible fin exhibits remarkable efficiency improvement, as well as
thrust augment, while the least flexible fin shows no obvious difference from the rigid
one. However, for the most flexible fin, although the thrust production decreases sharply,
the efficiency reaches the maximum value. It should be noted that by non-uniformly distrib-
uting the rigidity across the caudal fin, our model is able to replicate some fin deformation
patterns observed in both the live fish and the experimental robotic fish.
[DOI: 10.1115/1.4046409]
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1 Introduction
The ocean is rich in abundant resources such as minerals, natural

gas, and many others that benefit humans. The bio-inspired under-
water vehicle, as a new type of artificial vehicle, is a promising tool
to explore and exploit the ocean. The advantages of such vehicles
include low noise generation, excellent maneuverability, and high
efficiency at low-speed cruising [1,2]. The fin-activated propulsion
of aquatic animals provides a good prototype for the design of bio-
mimetic propellers due to the simple mechanical implementation.
Among them, the caudal fin propulsion is widely imitated in the
design of underwater vehicle [3].
In the past studies, to understand the fundamental locomotion

mechanism of the fish propulsion, the flexible fish fin or body
were usually simplified as rigid models [4,5]. More recently, the
flexible impact on the propulsive performance was investigated
and the results showed improved performance compared with a
rigid model. However, the so-called “flexibility” in those studies
refers to a mathematically pre-defined fin deformation by recon-
structing the realistic kinematics observed/recorded from the
live fish experiment [6–8]. In such a way, only the hydrodynamic
response to the designated structure deformation was examined,
whereas the effect of resultant fluid forces on the flexible fins was
neglected. Through the consideration of the dynamic interplay
between the flexible fins and the immersed fluid medium, some
studies explored the effect of the stiffness on the propulsive perfor-
mance of the fins. These studies usually considered flexible fins with
uniformly distributed structural parameters [9,10]. However, a real
fish fin is characterized as a composite structure composed of a
membrane strengthened by fin rays [11]. Therefore, the simplified
fin models with uniformly distributed stiffness may be unable to
reflect the real fin’s propulsive performance and its bending pattern.

To further understand the fundamental mechanism of fish
swimming associated with physical properties, some experiments
and numerical simulations have been conducted to investigate
the correlation between the inhomogeneous distribution of a
caudal fin’s rigidity and its propulsion capabilities. For example,
a novel variable-stiffness flapping mechanism was implemented
in the design of a bio-inspired underwater robot by Park et al.
[12]. Their experimental results reported the improvement of the
efficiency attributed to this unique design. The stiffness profiles
of real fish were measured by Kancharala and Philen using digital
image correlation techniques [13]. With their experimental data,
a chordwise varying stiffness robotic fin was fabricated to study
the locomotion performance in a water tunnel. Their results indi-
cated that the fins with varying stiffness generated larger thrusts
and higher efficiency compared with the uniform ones.
Numerically, due to the complexity to resolve three-dimensional

and time-dependent structural deformation and the resultant sur-
rounded fluid flow, few numerical simulations were conducted
to investigate the dynamic interaction of the flexible fins and
fluid. For example, Zhu and Bi developed a fully coupled FSI
model to study the spanwise deformation on the dynamics of a
ray-supported swaying caudal fin, and the performance enhance-
ment through the specific non-uniform distribution of rigidity on
the fin was reported [14].
However, the effect of the peduncle is often ignored in the

previous studies on caudal fin propulsion, while it does exist in
real fish locomotion [15]. In addition, the research on the influence
of stiffness reinforcement due to the fin rays is very limited in the
existing FSI simulations, while the experimental results by Esposito
et al. [16] suggested that on account of the existence of rays and thus
the different stiffness of fin surface, the deformation of fin is not
truly flat. In this work, inspired by the experiment conducted by
Ren et al. [17], a model composed of a rigid peduncle and a flexible
caudal fin with non-uniform flexibility is built to investigate the
impact of three-dimensional deformation on fin’s propulsive perfor-
mance through a fully coupled FSI numerical solver. Here, the
homocercal fin is modeled as an elastic thin plate assigned with
inhomogeneous rigidity, in which the rays-surrounding area is
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strengthened. The main objective of this study is to validate our
newly developed FSI solver and then investigate how the compli-
ance affects the propulsion performance of a caudal fin behind a
locomotor peduncle.

2 Mathematical Model and Numerical Approach
In this section, the governing equations for the fluid and the solid

are described. The fluid and structural domains are represented by
Ωf with the boundary Γf and Ωs with Γs, respectively. The fluid–
structure interface Γi = Γf ∩ Γs between the fluids and structures
is the common boundary of the two domains.

2.1 Fluid Solver. The governing equations of the flow around
the caudal peduncle and fin can be expressed in the integral form as

∂
∂t

∫∫∫

Ωf

WdΩf +
∫∫
©
Γf

Fc − Fd( ) · ndΓf = 0 (1)

where n is the unit normal vector in the outward direction, W rep-
resents the conservative variable vector, the vector Fc is the convec-
tive flux, and the diffusion flux is denoted by Fd.
The in-house fluid solver solves the viscous, compressible flow

using a cell-centered finite volume method based on a multi-block
grid system. Using a structured methodology, the fluid domain Ωf

is divided into an array of hexahedral cells. The convective term
is discretized by a central Jameson–Schmidt–Turkel scheme with
an artificial dissipative term introduced by Jameson et al. [18].
Green’s theorem is applied to obtain the first-order derivatives cal-
culating the viscous flux tensors. For unsteady simulations, the
dual-time stepping algorithm is used for time integration [19].
Furthermore, the local time stepping and multigrid method are

implemented in the fluid solver to accelerate the convergence and
implicit residual smoothing is applied to increase the stability of
the solution. Parallelization is achieved via message passing inter-
face to enable large-scale computation.
It is noted that in this study, the freestreamMach number, defined

as Ma∞=U/a∞, where U is the flow velocity and a∞ is the speed of
sound of the free stream respectively, is chosen as 0.06 to ensure
that the compressibility of the fluid is negligibly small but still
large enough for numerical stability. Additionally, the local Mach
numbers of the whole computational domain are monitored to guar-
antee that they are always below the critical value for pronounced
compressibility (Ma= 0.3). This compressible fluid solver has
been successfully applied to study various incompressible fluid
problems in our previous work [20–23].

2.2 Structural Solver. The basic equation of the finite element
method in the weak form of the balance of momentum can be
written in the differential form as

ρs
D2U
D2t2

= ∇ · P + ρsf (2)

where the acceleration of the material point is obtained by the
second derivatives of the displacement vector U of the structure.
Surface forces are modeled by the second Piola-Kirchoff stress
tensor P and body forces of per unit mass such as gravity are repre-
sented by f. The solid density is denoted by ρs.
The general governing equations of the solid dynamics, i.e.,

Eq. (2), are discretized using the finite element method. By applying
the standard virtual work method, the linear algebraic equation
system can be obtained by discretizing Eq. (2) in the whole solid
domain as

[K]{U} + [M]
D2

Dt2
{U} = {F} (3)

where [K] is the global stiffness matrix, [M] is the global matrix,
and [F] is the global force vector. By applying Newton’s second
law of motion, the time domain is discretized using the α-method

with a second-order accuracy here.
In the present work, the implementation of finite element method

solver is based on CalculiX written by Dhondt [24], in which a
variety of element types including the brick element, the tetrahedral
element, and the wedge element are used to discretize the solid
domain and define the shape functions.

2.3 Fluid–Structure Coupling. Considering the fluid solver
[25] and CalculiX [24] are both highly specialized in its specific
single-field physical solution and provide some advanced features,
a partitioned coupling scheme is thus employed in order to keep
the advantages from both solvers. In the present partitioned frame-
work, an implicit scheme is designed to avoid the numerical insta-
bility that may be encountered when the mass ratio is low. In the
present work, the fluid solver is integrated with CalculiX via
Precise Code Interaction Coupling Environment (preCICE), a cou-
pling library for partitioned multi-physics simulations [26].
In this solver, the interface quasi-Newton method with inverse

Jacobian from a least-squares model (IQN-ILS) [27,28] imple-
mented in preCICE is used to stabilize the coupling and accelerate
the convergence. It is a Newton–Raphson scheme which tries to
find the root of the residual equations of displacements and fluid
forces at the interface. Figure 1 demonstrates the basic coupling pro-
cedure where a sub-iteration loop is introduced within each time-
step n. Within each sub-iteration, the fluid grid is updated via a
fast-moving mesh algorithm [29]. The communication between
the fluid and structural solver is established via Transmission
Control Protocol/Internet Protocol (TCP/IP) sockets, and the data
mapping is achieved by the radial basis functions-based interpola-
tion [30]. The details of the framework of the present FSI solver
are described in Ref. [31].

3 The Flexible Caudal Fin Problem Formulation
The current peduncle and caudal fin model is inspired by the

experiment test conducted by Ren et al. [17], where a robotic fishtail
mimicking the locomotion of the Bluegill Sunfish (Lepomis macro-
chrus) has been experimentally examined. In their experiment, the
robot consists of a rigid peduncle and a flexible caudal fin, and more
details of the experimental setup can be found in Ref. [17].
In this work, the geometry and dimensions of the peduncle

and caudal fin is depicted in Fig. 2, where the geometrical data of
the caudal fin is taken from the experiment [17] which is designed
to replicate the shape of its real biological counterpart [32].
However, the peduncle is modified, as displayed in Fig. 2, to present
a streamlined fashion and a smooth transition from the peduncle to
caudal fin, which mimics a real fishtail and also provides the ease
for our computational fluid dynamics (CFD) mesh generation.
The kinematics of the present model is described as follows. The

peduncle combined with the caudal fin rotates harmonically around
the z-axis with the reference point O in a uniform flow in the pos-
itive x-direction with a velocity of U. The time-dependent pitch
motion of the model is described by θ(t)= θmsin(2πft), where θm
is the maximum amplitude and f denotes the oscillating frequency.
The dimensionless parameters are defined as the Reynolds

number Re = Uc/ν, where c is the maximum chord length of the
fin at the angle of 37.5 deg; mass ratio m*= ρst/ρf c; the reduced
frequency f *= fc/U; the Poisson’s ratio the νs; dimensionless stiff-
ness K=EI/(ρfU

2c3), where E is Young’s modulus and I= h3/12 is
the area moment of inertia of the cross section.

3.1 Performance Metrics. To evaluate the propulsion perfor-
mance of the caudal fin, the instantaneous thrust and power coeffi-
cients are defined as

CT = −
Fx

1
2
ρf U

2S
(4)
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Fig. 1 Flowchart of the implicit FSI coupling in a partitioned approach adapted from Ref. [31]

Fig. 2 The peduncle and caudal fin model and dimensions: (a) fish peduncle-caudal model, (b) xz view
of the model and dimensions, (c) yz view of the model and dimensions, and (d ) xy view of the model and
dimensions
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CP =
MOθ̇

1
2
ρf U

3S
(5)

where Fx is the total hydrodynamic forces on the caudal fin in the
x-direction, S is the reference area, i.e., the area of the fin in the
xz surface, and MO represents the z-component of the reaction
moment at point O. Meanwhile, the lateral force is defined as the
hydrodynamic force in the y-direction

CL =
Fy

1
2
ρf U

2S
(6)

The propulsion efficiency η is given by

η =
�CT

�CP
(7)

where �CT and �CP are the time-averaged values of CT and CP within
one oscillating period.

3.2 Structural Model of the Caudal Fin—The
Non-Uniformity of Flexible Fins. In the experiment by Ren
et al. [33], the fin consists of rigid rays and elastic membrane.
The fin membrane is glued with the rays. Since the rays are
relatively much smaller compared with the whole fin membrane
surface, therefore, to simplify the modeling, the rays are not
modeled explicitly in the present simulation. Nevertheless, consid-
ering the existence of the rigid rays, the stiffness of the caudal fin is
strengthened locally surrounding the glued rays.
To consider the effect of the rays on the fin membrane, non-

uniform distribution of Young’s modulus is assigned to the finite

element model of the fin, as depicted in Fig. 3. The non-dimensional
stiffness around the fin rays area K1 is larger than that K2 away from
these areas, and K1= rK2, r> 1, where r is the stiffness ratio. By
referencing the distribution of the material properties of a caudal
fin inversely determined by Liu et al. [34] using a finite element
analysis method, the stiffness ratio is selected as r= 2.

4 Validation and Resolution Verification
4.1 Validation Cases. The fluid solver used in the present

work has been extensively validated in our previous work
[20–22,25]. Here, the following three properly selected cases are
used to validate the coupling of the fluid solver with CalculiX via
preCICE.

4.1.1 Flow Over a Flexible Cantilever Behind a Square
Cylinder. This problem consists of a fixed square bluff body with
an elastic cantilever attaching in its wake [35–37]. Previous
studies indicated that the flow separated from the leading edge of
the square cylinder will induce a periodic oscillation of the flexible
cantilever.
The layout of the computational domain is presented in Fig. 4(a).

In the present simulation, three grids are generated using a multi-
block approach, i.e., a fine mesh with 153,428 cells, a medium
mesh with 110,284 cells and a coarse one with 77,556 cells. The
structural mesh comprises 123 quadratic wedge elements with
standard shape functions [24].
In this simulation, Re = U∞d/ν = 330, therefore, the laminar

flow is solved. The physical properties, i.e., mass ratio m*=ρse/
ρf l = 1.27, non-dimensional bending stiffness K = EI/
(ρf U

2
∞ l3) = 0.23, and Poisson’s ratio νs= 0.35 are chosen to

make the frequency of shedding vortex approximate the first eigen-
frequency of the cantilever so that a remarkable oscillation can be
observed. In the structural part, the left end of the cantilever is set
as fixed, and the movement of the whole cantilever is limited
only in x- and y-directions.
Figure 5 depicts the displacement of the free end of the flexible

beam in the y-direction with three dimensionless time-step sizes,
which are defined as Δt = ΔtU∞/d, for the three different meshes.
As seen, the displacement lies in a range of 0.80–1.20 cm, and the
non-dimensional oscillation period �T = TU∞/d varies around 16.01.
Observed from previously published literature [35,36,38–40],
the displacement amplitude lies between 0.8 and 1.4 cm and �T
ranges between 15.80 and 17.44. Therefore, the current simulation
results have a good agreement with the previous numerical solution.
The generated mesh after deformation when the tip displace-

ment reaches its maximum is depicted in Fig. 4(b). The velocity
and pressure contours around the square cylinder and the cantilever
at this moment are shown in Fig. 6. The velocity distribution
presents the unsteady behavior of the flow, especially around the
cylinder and cantilever. Small velocity magnitudes are observed

Fig. 3 The generated structural finite element mesh with the
locally strengthened area of the caudal fin

(a) (b)

Fig. 4 The computational domain layout (a) adopted fromRef. [31], and the generatedmediummesh around
the cantilever after the deformation when the tip displacement reaches the maximum (b)
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near the cantilever and cylinder surfaces which is consistent with
the results in Ref. [38]. It is also observed that the pressure differ-
ence between the upper and lower surface of the cantilever is pro-
nounced, which may contribute to the unsteady oscillation of the
cantilever directly.

4.1.2 The Bending of a Three-Dimensional Flexible Plate in
Uniform Flow. In this validation test, it involves a flexible plate
which is bent while placed in crossflow. The original case derives
from an experimental study on the flow-induced reconfiguration
of flexible aquatic vegetation conducted by Luhar and Nepf [41].

One of their experiment cases was then numerically simulated as
an FSI validation by Tian et al. [42]. In their work, they quantita-
tively compared the results with experimental data in the presence
of gravity and buoyancy and performed a series of simulations in
the absence of them for the purpose of benchmarks studies. Here,
the latter cases are chosen to validate our proposed multi-physics
numerical suite.
The computational domain of the flow over the elastic plate is

depicted in Fig. 7(a). The plate is placed vertically in the crossflow
with its bottom end clamp-mounted while the free end can deform
under the action of fluid forces. The parameters are all dimen-
sionless: the length h= 5b, the thickness t= 0.2b, where b is the
width, the flow is laminar and Re = U0h/ν = 100, mass ratio
m* = ρsb/ρf t = 0.14, K = EI/ρf U

2
0b

3 = 2.39, and νs= 0.4. The
fluid computational domains contain three meshes including a
coarse grid with 2,793,362 cells, a medium one with 3,916,111
grid cells, and a fine mesh with 5,585,602 cells. Three dimen-
sionless time-step sizes, which are defined as Δt = ΔtU0/b,
i.e., Δt = 0.0292, Δt = 0.0208, and Δt = 0.0148 are used for the
computation, respectively. The structural mesh contains 1400 qua-
dratic brick elements.
The displacement of the plate center and the drag coefficient,

which is defined as Cd = Fx/(0.5ρf U
2
0bh), in the absence of gravity

and buoyancy when Re = 100 are compared in Table 1. Based on
the results shown in Table 1, we also simulated the deformation
of the plate under Re = 400 using the medium mesh with Δt =
0.0208 and the results are shown in Table 2. It indicates that the
present FSI simulation results match well with the counterparts in
Ref. [42].

4.1.3 The Response of a Flexible Plate in a Forced Harmonic
Heave Motion. This numerical validation case involves an experi-
mental study conducted by Paraz et al. [43,44]. It consists of a

Fig. 5 Vertical tip displacement of the cantilever beam with dif-
ferent time-step sizes

Fig. 6 The velocity magnitude contour (a) and pressure contour around the cantilever when the tip displacement reaches the
maximum (b)

(a) (b)

Fig. 7 The computational domain of flow over an elastic plate (a) and the generated medium
mesh around the plate (b)
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horizontal flexible plate which is made of the polysiloxane. The
plate has a rounded leading edge and a tapered trailing edge. The
thickness of the plate is 0.004 m, chord length is 0.12 m, and
span is 0.12 m, giving an aspect ratio of 1. In their experiment,
the leading edge was forced into a harmonic heave motion while
the trailing edge was set free, as shown in Fig. 8(a). The elastic
plate deformed under the hydrodynamic forces. More detail about
the experimental setup can be found in Ref. [44].
Three grids are generated: a coarse mesh with 40,626 cells, a

medium-size mesh with 57,424 cells, and a fine mesh with 79,514
cells. With these fluid meshes, we performed the grid and time-step
size tests for the case when the normalized frequency f/f0= 1 with
time-step corresponding to the coarse mesh is Δt = fΔt = 0.00694,
the medium grid is Δt = 0.00501, and for the fine grid is
Δt = 0.00357. The flow is assumed as laminar and the simulation
is carried out with a structural grid with 105 quadratic brick elements
[24]. The response of the plate is characterized by the change of the
relative displacement of the trailing edge with respect to that of the
leading edge ATE/ALE and the phase difference φ between them.
The comparison of ATE/ALE under different resolutions is shown in
Fig. 9. To reduce the computational cost and meanwhile, to obtain
accurate results, we chose the medium-size mesh for the other sim-
ulations. The displacement of the trailing edge and the phase shift
with varied forcing frequency is shown in Table 3.
It can be found from Table 3 that the present simulation results

match well with the counterparts in the experiment. The peak
displacement of the trailing edge is obtained when the forcing fre-
quency equals the natural frequency f0. At this point, the trailing
edge displacement ATE is 1.5 times larger than the ALE. This is
the first resonance peak according to the analysis by Paraz et al.
[44]. With the increase of forcing frequency, we find that the

phase shift φ experiences a continuous increase, indicating
the strong interactions between fluid and structure with a large
forcing frequency. The evolution of the Z-vorticity is depicted in
Fig. 10. As seen, although the heave amplitude is relatively small
compared with the length of the plate, the vortex street can still
form and be observed clearly at the wake of the plate.

4.2 Resolution Verification. A resolution study is performed
to assess the appropriate mesh and time-step resolution by solving
the laminar flow for Re = Uc/ν = 2500, m* = 0.02, νs= 0.25,
f * = 1, θm= 8 deg, and K2= 5.
Three grids are generated: a coarse grid with 2,582,214 nodes and

minimum spacing of 1.6 × 10−3c in each direction, a medium grid

Table 1 Comparison of drag coefficient and deformation in the
absence of gravity and buoyancy when Re=100

Cd Dx/b Dy/b

Tian et al. [42] 1.02 2.34 0.67
Mesh_fine 1.05 2.31 0.675
Mesh_medium 1.06 2.31 0.678
Mesh_coarse 1.10 2.24 0.611

Table 2 The drag coefficient and deformation in the absence of
gravity and buoyancy when Re=400

Cd Dx/b Dy/b

Tian et al. [42] 0.94 2.34 0.68
The present study 0.99 2.28 0.647

(a) (b)

Fig. 8 Sketch of the experimental setup of the flexible plate in a forced heave
motion [44] (a) and the generated fine mesh around the plate (b)

Fig. 9 Results of the relative displacement of the trailing edge
with three different meshes when f/f0=1, Re=6000, ALE=
0.004 m, and rigidity B=0.018 N·m

Table 3 The response of the trailing edge when the normalized
frequency is varied for Re=6000, ALE= 0.004 m, and rigidity B=
0.018 N·m

f/f0
ATE/ALE in the
experiment [44]

Present
ATE/ALE

φ in the
experiment (rad)

[44]
Present
φ(rad)

0.53 1.53 1.60 −0.065 −0.060
0.73 2.10 2.29 −0.17 −0.19
1.00 2.58 2.49 −0.40 −0.43
2.10 1.60 1.62 −0.82 −0.81
2.50 1.49 1.55 −0.86 −0.88
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with 3,414,712 nodes and minimum spacing of 1.2 × 10−3c as
shown in Fig. 11(a), and a fine grid with 5,592,570 nodes and
minimum spacing of 8 × 10−4c. All these three grids contain 103
blocks. The structural mesh contains 1532 quadratic brick elements.
Furthermore, the non-dimensional time-step corresponding to the
coarse grid is Δt = fΔt = 0.00909, the medium grid is Δt =
0.00667 and the time-step size for the fine one is Δt = 0.00556.
The results of CT when three different grids and time-step sizes
are used are shown in Fig. 11(b), and the mean coefficients CT ,
CP as well as efficiency are compared in Table 4. Observed from
the comparison, we can find that the medium resolution setup is suf-
ficient to simulate the flow field around the caudal fin. Therefore,
the medium grid with a time-step Δt = 0.00667 is used for the fol-
lowing simulations.

5 Results and Discussions
With the above code verifications, we applied the developed FSI

tool to the rigid and flexible fins study as aforementioned. The flow
considered is assumed as laminar and the Reynolds number under
consideration is 2500, and under this Re number, the turbulence

effect may play an insignificant role in the flow filed. The
mass ratio is m* = 0.02, the rotation angle θm is 8 deg, the
Poisson’s ratio νs= 0.25, and the reduced frequency is f * = 1.
These parameters are chosen to match those in the experiment by
Ren et al. [33].
The predicted time-mean thrust, lateral forces, power input coef-

ficients, and efficiency of the caudal fin, when flexural stiffness
is varied, are summarized in Table 5. As seen from the table, the
flexibility of the fin has a significant effect on the propulsion perfor-
mance of the caudal fin. The �CT , �CL, �CP, and η vary remarkably
when the caudal fin is assigned with different flexural rigidities.
Compared with a rigid caudal fin, mostly, a flexible one is able to
generate larger thrust, especially when K2= 3 the �CT increase by
197%, almost three times as large as that of a rigid one. In fact,
when the rigidity reaches a sufficient big level, the thrust and effi-
ciency show no difference with the rigid counterpart. Oppositely,
when the fin is too flexible, i.e., K2= 0.5, despite the pronounced
improvement of the efficiency, the thrust is very limited, which is
even smaller than that of a rigid fin. These findings are consistent
with the results in Refs. [23,45–48].
In terms of the power consumption, for flexible fins, it seems that

the more thrust is generated, the more power input is needed. The

Fig. 10 The vorticity contours in the z-direction during one
heave period

Fig. 11 The generated medium fluid mesh around the caudal peduncle-fin model (a) and comparison of CT with
different resolutions (b)

Table 4 CFD mesh and time-step resolution study results

CT CP η

Number of
processors used
(2.1 GHz, Intel
Xeon E5-2695)

Computational
time per

locomotion
period

Mesh_Coarse 1.545 8.945 0.173 72 17,994 s
Mesh_Medium 1.599 9.131 0.175 103 28,355 s
Mesh_Fine 1.616 9.227 0.175 103 52,240 s

Table 5 Summary of the time-mean thrust, lateral forces, power
input coefficients, and efficiency

�CT �CL �CP η

Rigid 0.5995 −0.0003 6.7056 0.0894
K2= 0.5 0.4321 0.3317 1.8952 0.2280
K2= 3 1.7784 0.9102 8.3562 0.2128
K2= 5 1.5992 0.7002 9.1314 0.1751
K2= 50 0.6944 0.00007 7.1918 0.0966
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only exceptional case is K2= 3, in which the largest thrust is
produced, while its needed power expenditure is not the most. In
general, for compliant fins, the increase of power input is not as
remarkable as the improvement of thrust, so the overall efficiency
is enhanced compared with a rigid fin.

The time history of the thrust coefficient, the normalized lateral
forces, and power input coefficient are demonstrated in Fig. 12.
To facilitate description, these cases are categorized into three
types: the least flexible cases (rigid find and the fin with K2= 50),
the medium flexible cases (the fin with K2= 3 and K2= 5), and a

Fig. 12 Instantaneous thrust coefficient CT, lateral forces coefficient CL, and power input coefficient CP over one flapping period
when K2 is 0.5 (dash dot line), 3 (dash dot line), 5 (dot line), 50 (dash line), and the fin is rigid (solid line)

Fig. 13 The time history of the y-direction displacement (a) and trajectory in xy plane (b) of the point A over one flapping period
when K2 is 0.5 (dash dot line), 3 (dash dot line), 5 (dot line), 50 (dash line), and the fin is rigid (solid line)
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highly flexible case (the fin with K2= 0.5), according to their pro-
pulsion capability shown in Table 5.
As observed in Fig. 12(a), within one oscillation period, apart

from the highly flexible case, the other two patterns both present
two thrust peaks, though with different amplitudes. It is noted
that the two crests of the rigid fin and the fin with K2 = 50 are
almost the same, indicating a symmetric feature between the fore
and later half flapping. However, when the fin is more compliant,
this symmetry is broken, and the emergence of the peaks is
delayed significantly. In general, the thrust curves of the least
flexible cases and those of the medium flexible cases present
similar variation patterns. The CT curves of the medium flexible
fins have two steep amplitude glens around peaks, which benefits
faster acceleration maneuverability for the fish. In comparison,
the CT curves of the least and highly flexible cases have lower
peaks and flatter troughs, especially that of the fin with the smallest
rigidity only fluctuate in a small range of amplitude in the second
half flapping.
Nevertheless, all the power input coefficient curves almost have a

similar fashion except for that of the highly flexible fin. The CP

curve of the most compliant fin has a much smaller amplitude
throughout most of the flapping cycle, so despite the least mean
thrust output, it attains the most efficient propulsion. Interestingly,

by comparing Fig. 12(a) with Fig. 12(c), it can be observed that
the instantaneous thrust generation and power input almost reach
the peaks at the same time, i.e., around the middle of the flapping
period, when K2= 3.
As the power input plot, the lateral forces of the highly flexible

fin presents a totally different fashion as others, of which all
have clear peaks emerging around 2/5–3/5 T. However, owing
to a continuous low lateral forces generated by the highly
flexible fin, it may benefit to a straight-line cruising swimming
for a fish.
The time history of the y-direction displacement and the trajec-

tory of the point A at the upper trailing edge of the caudal fin
shown in Fig. 2(a) within one flapping cycle is plotted in Fig. 13.
It can be observed from Fig. 13(a) that the flexibility causes the
delay of the appearance of the peak displacement. Meanwhile,
like the instantaneous thrust curves, the motion of point A exhibits

Fig. 14 Images from a high-speed video of a live Bluegill fish in
the flat motion adopted from Ref. [16] (a) and that of the current
caudal peduncle-fin model (b) when K2=3 at time t+T

Fig. 15 The fin deformation patterns of the trailing edge of the
fin with K2=3 (a) and posterior view of the robotic caudal fin in
Ref. [50] (b)

Fig. 16 The wake flows contoured in Y vorticity of the flexible finwith K2=3 (a) and the rigid fin in
the xz plane of y=0.005 m at the time t+T (b)
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three completely distinct fashions. When the fin is least flexible,
the trajectories of the A are almost symmetric between the prior
half and posterior half flapping, thus their motion curves are
parabolas. However, when the fin is more compliant, their tra-
jectories become figure-eight shapes, which is reminiscent of the
typical orbital trajectories of the vortex-induced vibration of a
cylinder [49].
The images obtained from a high-speed camera from the exper-

iment of Esposito et al. [16] and that of the present caudal fin
model are compared in Fig. 14. Owing to the reinforcement of
the rigidity of the middle part of the caudal fin, it seems that
the middle trailing edge has a phase delay compared with the

dorsal and ventral parts in the present model, which is observed
in the bending of the real fish caudal fin. This distinguishes the
current simulation from most of the existing numerical studies
in which only a uniformly distributed stiffness is considered. It
can be further observed clearly in Fig. 15, in which the curvature
patterns of the trailing edge of the caudal fin in yz plane during
one flapping period is depicted, to demonstrate a highly three-
dimensional deformation. Moreover, even though no active
control of fin rays is imposed, a similar bending form to that
of the robotic fin in the experiment [50] is observed. As a
matter of fact, according to the results of the simulations by
Zhu and Bi [14], more complex deformation patterns of caudal
fins, e.g., W-shape, can be achieved by imposing specific distri-
bution of the flexibility of fish rays (fin).
The wake flow of the rigid and flexible fins (K2= 3) are pre-

sented in Fig. 16. Two tip vortices shed from the dorsal- and
ventral-most of the trailing edge of the caudal fin are formed par-
allel and alternatively. They have opposite rotation directions
with one in counterclockwise while the other clockwise, and
their vortices are approximately equal. These results match with
those obtained in the experiments [16,33] using digital particle
image velocimetry techniques, and to our knowledge, no
similar vorticity patterns are reported by previous FSI studies.
In comparison, the intensity of the vortices behind the flexible
fin outperforms that of a rigid counterpart and it also has
farther influence zone in the wake. As a result, the flexible fin
generates larger thrust than the rigid one. This may explain the
thrust augment shown in Fig. 12(a).
The wake structures of the flexible fin with K2= 3 and the rigid

fin are depicted in Fig. 17. It can be observed that different wake
patterns are presented between the two cases. Two trains of

Fig. 17 Iso-surface of vorticity field (Q criterion) in the wake of
the flexible caudal fin (K2=3) (a) and the rigid fin (b)

Fig. 18 The pressure contours at the two sides of the flexible (K2=3) and rigid model and their
configurations in the xy plane at t+1/2 T. The left and right are defined from the viewpoint at pos-
terior and Cpre= (p−p∞)/0.5ρfU

2.

Fig. 19 Force vectors of the flexible (K2=3) (black) and rigid
(pink) fin within one motion period
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vortex rings are formed in their wake with distinct shapes. In com-
parison, the geometry of the wake of the deformable fin is more
complex with some small vortices attached around the main
vortex rings, while the wake of the rigid one is more regular. In
addition, the wake structure of the rigid fin appears to be com-
pressed in the spanwise direction compared with that of the flexible
counterpart, which appears to expand in both dorsal and ventral
directions and also along the further wake instead. This is consistent
with the Y vorticity contour in Fig. 16 indicating that a three-
dimensional deformation of the fin makes the wake pattern more
complex.
The pressure distribution of the caudal peduncle-fin model is

plotted in Fig. 18. It can be observed that the left side of the rigid
fin is covered by high pressure which becomes stronger along the
trailing edge, while low pressure mainly occupies the surface of a
flexible fin near the tip. As for the right side, a remarkable low-
pressure zone is observed at the flexible fin surface, and in compar-
ison, the rigid fin surface has a smaller pressure gradient. It seems
hard to evaluate the thrust generation only by the similar pressure
difference at the two sides between the flexible and rigid fin.
However, with a close inspection of the configurations of the two
models in the xy plane, one may find that the flexible fin is better
oriented in the negative x-direction, which can be further found in
Fig. 19. The forces generated by a rigid fin may have a larger mag-
nitude than those of a flexible one, but the forces of the latter are
better pointed in the thrust direction, which contributes to the
thrust enhancement for a flexible fin.

6 Conclusions
In this work, a fully coupled FSI solver is proposed by combining

our in-house fluid solver with a finite element method based code
CalculiX via preCICE. Three FSI validations are conducted to
verify this multi-physics solver. Beyond that, the developed tool
is applied to study the propulsive performance of a caudal peduncle-
fin swimmer with a non-uniform distribution of stiffness. It is found
that the compliance of the caudal fin has a significant impact on its
propulsion performance. With the parameters selected in this paper,
the flexible fins outperform the rigid counterparts in terms of
thrust generation and/or propulsion efficiency. The degree to
which is profoundly affected by the assigned inflexibility. Interest-
ingly, via apposing inhomogeneous distribution of the rigidity of
fins, some curvature patterns of the caudal fin, observed from live
fish and bio-inspired experimental robotic fish, are presented from
our simulation results.
It must be noted that due to the simplified model for the distribu-

tion of caudal fin rigidity, the effect of the more complex situation,
such as the variations of the flexibility in spanwise direction of the
fin, is not investigated. In addition, the chordwise distribution of
flexural rigidity of a real fish fin is non-uniform while we
assumed it is uniform in this study. Obviously, more in-depth inves-
tigations are needed to elucidate the abovementioned effects for a
better understanding of this problem.
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