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The lag model proposed by Olsen and Coakley is applied in combination with the baseline k–! two-equation
turbulence model to simulate the steady and unsteady transonic � ows in a diffuser. A fully implicit time-accurate
multigrid algorithm is used to solve the unsteady Navier–Stokes equations and the coupled k–! turbulence model
equations. Two test cases are investigated, one with a weak shock in the channel corresponding to an exit-static-to-
inlet-total pressure ratio Rp = 0.82 and the other with a strong shock corresponding to Rp = 0.72. Unsteady � ows
are induced by imposing � uctuating backpressure. Computational results are compared with experimental data
and demonstrate notable improvement by the lag model for � ows with strong shock–boundary-layer interactions.

Nomenclature
a = sound speed
E = total energy
e = internal energy
f = backpressure frequency
h = channel height
k = turbulent mixing energy
M = Mach number
PrL ; PrT = laminar and turbulent Prandtl numbers
p = pressure
Q = source term of lag equation
Rp = pressure ratio
R¤.W/ = vector of the unsteady residuals
T = temperature
t = real time
t¤ = pseudotime
ui ; u j = velocity vector
W = vector of � ow state variables
x = streamwise coordinates, 0 at throat
y = vertical coordinate, 0 at lower wall
yC

w = non dimensional distance from wall
¯; ¯¤; ¾; = turbulent closure coef� cients
¾ ¤; "; "¤

° = ratio of speci� c heats
±i j = Kronecker delta function
¹; ¹t = dynamic molecular viscosity and eddy viscosity
º; ºt = kinematic molecular viscosity and eddy viscosity
½ = density
¿i j ; O¿i j = Reynolds and total stress tensors
! = speci� c dissipation rate

Subscripts

E = equilibrium
th = throat
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w = wall
1 = inlet
2 = exit

I. Introduction

A CCURATE prediction of unsteady � ows is an important ca-
pability in the analysis and design of modern aircraft and

the turbomachinery of gas-turbine engines. Major improvements
in computing power and computational methods have resulted in
the appearance of unsteady � ow computations that employ Euler
and Navier–Stokes equations. In spite of these recent advances,
computation of unsteady � ows with shock interaction remains a
problem that demands large amounts of computational resources
and improved accuracy in numerical discretization and turbulence
modeling.

Signi� cantprogresshas beenmade in thedevelopmentof ef� cient
numerical algorithms for time-accurate computations. Jameson1

proposedan ef� cientmultigrid-drivenimplicit approachto the solu-
tionof theEuler equationsusing the techniqueof dual time stepping.
It uses an implicit multistep discretizationin time. A large set of si-
multaneous nonlinear equations is formed and marched to steady
state in pseudotime through a multigrid algorithm within each real
time step. This approach has been used for aeroelastic studies and
for unsteady� ows in turbomachinery(Liu et al.2 and Yao et al.3/. Of
note is that this method also facilitates the incorporation of turbu-
lence models. Liu and Ji4 developed a fully implicit time-accurate
multigrid algorithm to solve the coupled unsteady Navier–Stokes
equations and the k–! two-equation turbulence model equations.
The scheme relaxes the Courant–Friedrichs–Lewy stability limit
by using implicit time-accurate discritization.Local time stepping,
residual smoothing, and multigrid techniques are used to acceler-
ate the convergence for both the � ow and the turbulence model
equations.

The baseline k–! two-equation turbulence model, as well as
other classical one- or two-equation turbulencemodels, do not ade-
quately accountfor “history”effectsencounteredin � ows with large
pressure gradients involving separation and shock waves, such as
those found in nozzles and diffusers. The Reynolds stresses pre-
dicted by such models respond instantaneously to changes to the
local strain rate. More complex Reynolds stress models address
this problem due to builtin lagging of Reynolds stresses in both
time and space in the model equations, but extensive studies show
dif� culties for their practical use. They are computationally more
involved and numerically stiff and, hence, generally not practical
for complex problems.Nonlinear algebraic Reynolds stress models
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have emerged as a simpler alternative. However, it is known that
such models also respond too rapidly to mean � ow conditions as
one- and two-equation models do. Olsen and Coakley5 recently
proposed a new class of models, which is termed the lag model.
The basic idea of the lag model is to take a baseline two-equation
model and couple it with a third equation,the lag equation,to model
the nonequilibriumeffects for the eddy viscosity. Computations of
steady incompressible and transonic � ows by Olsen and Coakley
show signi� cant improvement by the lag model over the plain k–!
turbulence model. Its simplicity and computational ef� ciency is an
added advantage, and thus, it serves as a convenient and effective
enhancement to existing one- or two-equation turbulence models
for three-dimensional� ows.

The usefulness of this lag model is explored for steady and un-
steady � ow calculationswith shock–boundary-layerinteractions.A
geometrically simple but computationally challenging problem is
the unsteady� ow due to � uctuating backpressure in a transonic dif-
fuser. Bogar et al.,6 Salmon et al.,7 and Sajben et al.8 presented
experimental measurements for the pressure � eld in a transonic
and supersonic diffuser with an oscillating shock wave. Liou and
Coakley9 numerically investigated this con� guration using a modi-
� ed MacCormack’s hybrid method for the unsteady Navier–Stokes
equation and the k–!2 turbulent model without the lag model. In
this paper, calculations are conducted of the same test problem to
assess the utility of the lag model for unsteady problems.

The lag model is here incorporated into the � ow code devel-
oped by Liu and Ji4 to solve the coupled unsteady Navier–Stokes
equationsand the k–! two-equation turbulencemodel equationsby
a fully implicit time-accurate multigrid method. In the following
sections, the mathematical formulation of the Navier–Stokes and
turbulence model equations and the numerical solution method are
outlined. This is followed by the discussion of the computed nu-
merical results for the � ow� eld. Conclusions are given in the � nal
section.

II. Mathematical Formulation and Numerical Method
A. Governing Equations

The governingequationsfor the unsteady compressible turbulent
� ow with use of the Wilcox10 k–! modeland the lag model by Olsen
and Coakley5 are expressed as follows.

Mass conservation:
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Momentum conservation:
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Turbulent mixing energy:
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Speci� c dissipation rate:
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Turbulent eddy viscosity:
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The total energy and enthalpy are E D e C k C ui ui =2 and H D
h C k C ui ui =2, respectively, with h D e C p=½ and e D p=
[.° ¡ 1/½]. Other quantities are de� ned in the following equations:
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The closure constantsused in the precedingequationsare a0 D 0:35,
RT 0 D 1, RT 1 D 0:01, " D 5

9
, "¤ D 1, ¯ D 0:075, ¯¤ D 0:09, ¾ D 0:5,

and ¾ ¤ D 0:5.

B. Lag Model
As pointed out by Olsen and Coakley,5 conventional one- and

two-equation turbulence models generate Reynolds stresses that
respond too rapidly to changes in mean � ow conditions partially
due to the need to reproduce accurately equilibrium � ows. As a re-
sult, thesebaseline turbulencemodels give unsatisfactoryresults for
� ows with signi� cant separationunder adversepressuregradientsor
across shock waves. In the Preceding formulation [Eqs. (1–14)], the
standard k–! turbulent model [Eqs. (4) and (5)] is kept unchanged.
However, the k and ! are only used to predict the equilibrium eddy
viscosity ºtE . An additional equation [Eq. (6)] is used to predict the
actual eddy viscosityºt . This lag equation is essentiallya relaxation
model intendedto accountformemoryeffectsof the turbulenceeddy
viscosity in adjusting to its local equilibrium value. The left-hand
side of Eq. (6) is simply the Lagrangian derivative of ºt , which is
driven on the right-hand side by its deviation from the equilibrium
turbulenceeddy viscosityºtE predicted by the conventionalk and !
model.The coef� cient1=[a.RT /!] is the timescale for this nonequi-
librium process. The function given by Eq. (14) with the prescribed
constantsgiven earlier ensures a large relaxation time constant, that
is, a large time delay, when RT D ¹tE =¹ is large. This is also the
case when ! becomessmall. On the other hand, it is shown by Olsen
and Coakley5 that Eq. (6) is decoupled from the k and ! quations
for such equilibriumturbulence� ows such as the decay of isotropic
homogeneous turbulence and fully developed channel � ows. In the
case of fully developed channel � ows, the lag model predicts the
desired equilibrium value: ºt D ºtE .

Notice thatEq. (6) involvesonlya simple inviscidtransportopera-
tor and a source term. It does not involveany diffusion terms nor any
wall distancesas are needed by the Spalart–Allmaras one-equation
model11 or by the Shear-Stress-Transport(SST) k–! model.12 Con-
sequently, its numerical solution is rather benign and can be easily
coupled with the Navier–Stokes and the k–! quations in a time-
marching method.
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Fig. 1 Control volume.

C. Numerical Method
The basic numerical method used to solve the preceding sys-

tem of equations follows that described in detail in Refs. 4 and 13.
The integral forms of the conservationequations are discretized on
quadrilateral cells using the � nite volume approach. A staggered
scheme is used for the coupling of Navier–Stokes equationsand the
k–! and lag equations, that is, the � ow variables½ , ½ui , and ½E are
de� nedat the cell centers (a–d in Fig. 1), whereas turbulentvariables
½k, ½!, and ½ºt are stored at the cell vertex (A–D in Fig. 1).

After applying the governingEqs. (1–6) to each cell in the mesh,
we obtain a set of ordinary differential equations of the form

d

dt
.Wi j Vi j / C R.Wi j / D 0 (15)

where W D [½; ½ui ; ½ E; ½k; ½!; ½ºt ]T , Vi j is the volume of the i ,
j cell, and R.Wi j / is the residual that is obtained by evaluating
the � ux integral in Eqs. (1–6). A central difference scheme is used
to discretize the diffusive terms in the Navier–Stokes and the k–!
equations. For the convective terms, a second-order MUSCL-type
upwind biased scheme using Roe’s � ux-differencesplittingmethod
is used in the Navier–Stokes equations, and a second-order � ux-
splitting scheme based on the convectivevelocities is applied in the
k–! and lag equations.(See Refs. 4 and 13 for details.)For example,
if the calculated normal convective velocity on the cell face ad is
positive (Fig. 1), a second-orderupwind interpolationfor ½ºt at the
cell face is ½ºt D 0:5 £ [3.½ºt /D ¡ .½ºt /E ].

The dual time-steppingmethod proposedby Jameson1 is adopted
here for the time discretization.The methodusesan implicitphysical
time discretization. At each physical time step, the equations are
integrated in a pseudotime to obtain the solution to the steady state
in pseudotime.This methodcombines theadvantageof both implicit
methods and the fast solution techniques that have been developed
for steady solutions (multigrid, implicit residual smoothing, etc.).

To obtain a fully implicit algorithm, Eq. (15) is approximated as
follows:

d
dt
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where the superscript n C 1 denotes the time level .n C 1/1t. The
d=dt operator is approximated by an implicit backward difference
formula. For a second-order accurate operator, Eq. (16) can be ex-
pressed in the following form:
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Equation (17) represents an implicit set of coupled ordinary differ-
ential equations. These equations can be solved at each time step
using the same multistage technique for explicit steady-statecalcu-
lations if we de� ne the modi� ed residual R¤.W/ as

R¤.W/ D R.W/ C .3=21t/.WV n C 1/

¡ .2=1t/.Wn V n/ C .1=21t/.Wn ¡ 1V n ¡ 1/ (18)

and march to steady state in a � ctitious time t¤ with the following
system of ordinary differential equations:

dW
dt¤ C R¤.W/ D 0 (19)

Within each real-time step, the set of ordinary differential equa-
tions (19) is solved using a � ve-stage Runge–Kutta scheme. To ac-
celerate the convergence, the unsteady multigrid method proposed
by Jameson1 and further implemented by Liu and Ji4 is applied in
the present study for all equations corresponding to Eqs. (1–6) in a
coupled fashion.

Compared with other two-equation eddy-viscosity models such
as thek–" model, the k–! model does not requiredampingfunctions
in the viscoussublayerand, therefore,is mathematicallysimplerand
less stiff near walls. However, the explicit time-marching formula
for thek, !, and lag equationswithin eachstageof a multistagetime-
stepping scheme limits the time steps due to the nonlinear source
terms in the k–! and lag equations.The remedy used here is to treat
parts of the source terms implicitly for the k–! equations, which
is demonstrated in detail in Refs. 4 and 13. For the lag equation, a
similar implicit treatment of the source term is applied.The explicit
scheme for Eq. (6) can be rewritten as

d.¹T /

dt¤
C R¤.¹T / D 0 (20)

Fig. 2 Geometry and grid distribution, 321 ££ 65 mesh and y+
w = 0.8).

(For clarity, grid is drawn by skipping one grid line in each direction.)

Fig. 3 Pressure distributions on the bottom wall (computed on differ-
ent grids for the strong-shock case).
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Fig. 4 Convergence history, 321 ££ 65 mesh and y+
w = 0.8.

a) Top wall

b) Bottom wall

Fig. 5 Pressure distributions along top and bottom walls, weak-shock
case: r , experiment; – – – , results without the lag model; and ——,
results with the lag model.

where R¤.¹T / is the residual
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Fn
c is the convective � ux and Q¹t the source term, which is made

implicit by evaluating it at the new time level (n C 1). To avoid
solving nonlinear equations, it is linearized about the current time
level n, resulting in
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III. Results and Discussion
The numerical methods presented are applied to a two-

dimensional steady and unsteady convergent/divergent diffuser in-
vestigatedby Sajben et al.8 The bottom wall is � at and the geometry

a) Top wall

b) Bottom wall

Fig. 6 Pressure distributionsalongtopandbottomwalls, strong-shock
case: r , experiment; – – – , results without the lag model; and ——,
results with the lag model.
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of the upper wall is given by

Nh. Nx/ D ® cosh ³

.® ¡ 1/ C cosh³
(23)

where

³ D
C1. Nx=Nl/[1 C C2. Nx=Nl/]C3

.1 ¡ Nx=Nl/C4
(24)

the variousconstantsfor the top wall are given in Table 1. The height
of the throat is hth D 1.7322 in. (4.4 cm).

Table 1 Constants for channel height

Constant Converging Diverging

® 1.4114 1.5
Nl ¡2.598 7.216
C1 0.81 2.25
C2 1.0 0
C3 0.5 0
C4 0.6 0.6

a)

b)

c)

d)

Fig. 7 Velocity pro� les at different streamwise locations, weak-shock case: a) x/hth = 1.73, b) x/hth = 2.88, c) x/hth = 4.61, and d) x/hth = 6.34: r ,
experiment; – – – , without the lag model; and ——, with the lag model.

The key parameter that characterizesthis diffuser� ow is the pres-
sure ratio, Rp D p2=pt1 , which is de� ned as the static pressure at
the outlet p2 divided by the inlet total pressure pt1. The � ow in the
diffuser can be classi� ed into the weak-shock and the strong-shock
categoriesbased on the pressure ratio. Two cases are investigatedin
the present work, one weak-shock case and one strong-shock case
corresponding to Rp D 0.82 and 0.72, respectively. The Reynolds
number based on the channel width is 7 £ 105 for both the strong-
shock and the weak-shock cases. There is a shock-induced � ow
separation in the strong-shockcase, whereas no � ow separationoc-
curs in the weak-shock case.

The boundary conditions are speci� ed as follows.
At the in� ow boundary, we set the experimental values of

pt1 D pt0 D 19:58 psia, Tt1 D 500R, and zero � ow angles. Either
the static pressure, the Mach number, or one Riemann invariant
is extrapolated from inside the � ow� eld. The inlet values of ! is
estimated as

!1 D O.10u1=h/ (25)

where u1 is the � ow velocity at the inlet. The turbulent energy k1 is
speci� ed with a small value to keep the inlet eddy viscosity at low
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level. For the diffuser calculations to be presented, the inlet ! and
k1 are taken as ! D 8 and k1 D 1:5 £ 10¡5. The eddy viscosity ºt is
set to ºtE .

At the out� ow boundary,only the static pressureis speci� ed given
that the experimentalpressure ratio Rp and all of the other variables
are extrapolated.To simulate the unsteady � ow, a prescribed outlet
static pressure taken from the experiment of Sajben et al.8 is im-
posed; P2 D Pe C P 0

e sin.2¼ f t/, where P 0
e is the amplitude of the

oscillation, P 0
e =Pe D 0:011, and f is the frequency. Only the case

with f D 75 Hz is tested in the present study.
At the wall boundary, zero velocity is imposed, and the pressure

is extrapolated to the wall. The turbulent mixing energy k is set
to zero. The speci� c dissipation rate ! must satisfy the following
asymptotic solution as the wall is approached:

! ! 6ºw

¯
¯y2

as the distance y ! 0. In all of our numerical examples, the preced-
ing equation is enforced only at the � rst grid point from the wall.
The eddy viscosity ºt is set to its equilibrium value ºtE .

a)

b)

c)

d)

Fig. 8 Velocity pro� les at different streamwise locations, strong-shock case: a) x/hth = 2.88, b) x/hth = 4.61, c) x/hth = 6.34, and d) x/hth = 7.49: r ,
experiment; – – – , without the lag model; and ——, with the lag model.

Figure 2 shows the geometry and grid distribution of a 321 £ 65
gridused in the presentstudy.Only everyother grid line is plottedfor
clarity. The grid is generated algebraically. It consists of lines per-
pendicular to the x axis and clusteringnear the throat (x D 0). In the
y direction,the mesh is stretchedgeometrically.The same grid spac-
ing away from the wall is usedon both the topandbottomwalls,with
the same geometric-progressionratio. At least one grid point near
the wall is in the rangeof yC

w < 1. Three sets of grids are investigated
herein for the grid resolution study: a 161 £ 65 grid with maximum
yC

w values next to the wall yC
w D 0.7, a 321 £ 65 grid with yC

w D 0.8,
and a 641 £ 129 grid with yC

w D 0.5.The computedstreamwisepres-
sure distributionsalong the bottom wall for the steady strong-shock
case are shown in Fig. 3. No signi� cant differences exist between
the solution on the 321 £ 65 grid with yC

w D 0:8 and that on the
641£ 129 grid with yC

w D 0.5. Therefore, the computational results
presented are conducted on the grid 321 £ 65 with yC

w D 0.8.
The convergencehistory for the steady strong-shockcase using a

321£ 65 mesh with yC
w D 0.8 is shown in Fig. 4 for the residuals of

the k, !, mass equations, and lag equations. Within 300 iterations,
the residuals of the k, !, and ¹T equations are reduced by 1 order
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of magnitude, whereas the residual of the mass equation is reduced
by 3–4 orders of magnitude.

The time needed for the steady case on a 321 £ 65 grid with 300
iterations is about 30 min on a personal computer workstation with
an Intel PIII 1.0-GHz processor and 1-GB RAM. For the unsteady
calculation, it takes about 240 s to complete 40 multigrid cycles
within one real-time step on a 321 £ 65 mesh, corresponding to a
time of 2.4 h for one period computation with 36 real-time steps.

a)

b)

Fig. 9 Velocity vector in the separation region for the strong-shock
case: a) with the lag model and b) without the lag model.

a)

b)

Fig. 10 Velocity vector and (¹tE ¡ ¹t )/(¹tE + ¹) contour in the range
2.0 < x/hth < 7.0, 1.0 < y < 1.79, strong shock case: a) velocity vector and
b) (¹tE ¡ ¹t )/(¹tE + ¹) contour, maximum value = 0.333, minimum
value = 0.089, and interval = 0.0488.

Steady Case
Figures 5a and 5b show the pressure distributionson the top and

bottom walls for the steady weak-shock case. For comparison, the
experimental results of Sabjen et al.8 are also included. No signi� -
cant differencesare observed between the results obtained with and
without the lag model. This fact implies that the lag model has no
effect on the pressure distributionfor the weak-shock case. The re-
sults of the strong-shock case are shown in Figs. 6a and 6b. Both
Figs. 6a and 6b show that the results with the lag model are closer
to the experimental data than the correspondingresults without the
lag model.

The velocity pro� les at different streamwise locations for the
weak-shock and the strong-shock cases are shown in Figs. 7a–7d
and 8a–8d, respectively, where h local-max is the channel width at
different streamwise locations, along with the experimental data
from Sabjen et al.8 (The locations corresponding to the different
values of x=h th are marked in Fig. 2.) For the weak-shock case, the
computational results agree reasonably well with the experimental
data. The differences between the results with and without the lag
model are small. The results for the strong-shockcase do not show

a)

b)

Fig. 11 Distributions of midstream time–mean velocity and pressure,
weak-shock case: a) velocity and b) pressure: r , experiment; – – –, with-
out the lag model; and ——, with the lag model.
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as good agreementwith the experimentaldata as those for the weak-
shock case. However, the computation with the lag model yields a
noticeable improvement over that without the lag model for this
strong shock case.

The major difference between the weak-shock and the strong-
shock cases is the existence of a shock-induced separation in the
strong-shock case. The computational results show that the sepa-
ration bubble on the top wall extends to about x=h th D 6 for the
strong-shockcase, whereas no separation is observed for the weak-
shock case. The effect of the lag model on the prediction of � ow
separation is shown in Figs. 9a and 9b for the strong-shock case.
(For clarity, the vectors are shown by skipping four lines in the
stream/wise direction and two grid lines in the y direction.) The
results obtained by the lag model show a slightly larger � ow sepa-
ration region than the correspondingresults without the lag model.

a)

b)

c)

Fig. 12 Variationsof midstream total pressure and static pressure and
top wall pressure within one period at x/hth = 5.836: a) midstream total
pressure, b) midstream static pressure, and c) top wall pressure: ——,
with the lag model and – – –, without the lag model.

Comparisons of the computed separation and reattachment points
and separationlengthswith the experimentaldata and two computa-
tional results by the WIND computer code presented in Georgiadis
et al.14 are listed in Table 2. They are WIND k–" without correction
and WIND k–" with two correctionfactors.The � rst correctionfac-
tor is the Sarkar compressibility correction, which provides for an
increasein thedissipationrateat higherMachnumbers.Anothercor-
rection factor is the variable C¹ option, which reduces the turbulent

Table 2 Comparison of � ow separation (steady strong shock)

Experiment/ Separation Reattachment Separation
computational location location length
methods x=hth x=h th 1x=hth

Experiment 1.98 6.00 4.02
WIND k–" 2.5 4.59 2.09

(no correction)
WIND k–" 2.2 5.96 3.76

(Sankar and variable C¹/
WIND SST 2.0 6.79 4.79
Normal k–! 2.65 5.93 3.28
k–! plus 2.29 6.32 4.03

lag model

a)

b)

Fig. 13 Distributionsof amplitudeand phase angleof midstream pres-
sure, weak-shock case: a) amplitudeand b) phase angle: r , experiment;

, with the lag model; and M, without the lag model.
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viscosity in regions where the ratio of production-to-dissipation of
turbulent kinetic energy becomes large.

The comparison reveals that the separation length and separation
location obtained with the lag model is closer to the experimental
data than the corresponding results without the lag model. How-
ever, it seems that the location of reattachment predicted by the
lag model shifts slightly downstream compared to the experimen-
tal results. The lag model also predicts a more accurate separation
length than the WIND k–" model with or without the two correction
factors. The separation and reattachment locations obtained by the
present lag model are better than those obtained by the WIND k–"
without the correction factors, but worse than those with the two
correction factors. The WIND SST model results are also included
in Table 1. It shows good agreement with the separation location,
but the separation length is overpredicted.The present computation
with the lag model yields the best overall result among the methods
listed in Table 2.

Flow history information in a turbulence model signi� cantly in-
� uences the accuracyof a computationfor separated� ows. This his-
tory effect is partially taken into account in a general two-equation
turbulent model such as the k–! model. However, it is found that
turbulence adjusts to equilibrium on a timescale much slower than
that for the change of the mean strain–tensor estimated by the nor-
mal two-equation models. The principal effect of the lag model is
to reduce the Reynolds stress from the equilibrium value ºtE to a
nonequilibrium lagged value ºt . This is important for � ows with
separation that are out of equilibrium. Figure 10 shows the con-
tours of the relative deviation of the nonequilibriumeddy viscosity
¹t from its equilibrium value ¹tE normalized by the total viscosity
.¹tE C ¹/ for the strongshockcase. (For clarity, thevetorsare shown
by skipping four lines in the stream wise direction in Fig. 10a) The

Fig. 14 Movement of shock location at different time instants within
one period.

value of .¹tE ¡ ¹t /=.¹tE C ¹/ reaches a maximum of over 30% in
the strong shock-induced separation region, indicating signi� cant
nonequilibriumeffect.

Unsteady Case
The calculation of unsteady � ow starts from a steady solution;

the � nal � ow� eld becomes periodic forced by the oscillatory pres-
sure ratio Rp. For the weak-shock case, the � ow becomes periodic
after 2–3 periods, whereas for the strong-shock case, 5–6 cycles
are needed to achieve a fully developed periodic � ow. Within each
implicit time step, 30–40 multigrid cycles are used. Four levels of
multigrid are used for accelerating the solution convergence.

Flow with a Weak Shock
Figures 11a and 11b show the computed streamwisedistributions

of the time–mean velocity and pressure in the midstream of the dif-
fuser for the weak-shock case. The velocity is nondimensionalized
by the sound speed at the throat, ath. The experimental results are
also included for comparison.The computationalresultsare in good

a)

b)

Fig. 15 Distributions of midstream time–mean velocity and pressure,
strong-shock case: a) velocity and b) pressure: r , experiment; – – –,
without the lag model; and ——, with the lag model.
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agreement with the experimental data. In addition, no apparent dif-
ferences between the results with and without the lag model can
be observed from Figs. 11a and 11b. This fact implies that, for this
unsteady weak-shock case, the effect of the lag model on the time–
mean values is not signi� cant. This resembles the conclusionfound
in the steady weak-shock case.

The variations of the unsteady total pressure and the static pres-
sure at midstream and the static pressure on the top wall, all at
x=h th D 5:836 (refer to Fig. 2), are shown in Figs. 12a–12c within
one oscillationcycle. The results show that all pressure oscillations
nearly follow a sinusoidal form, similar to that of the imposed back-
pressure. Moreover, the differences between the results with and
without the lag model are negligible.Figures 13a and 13b show the
amplitude and phase angle distributionsalong the streamwisedirec-
tion for the midstream pressure. The amplitude is normalized here

a)

b)

c)

Fig. 16 Variations of midstream static and total pressure and top wall
pressure within one period at x/hth = 5.836, strong-shock case: a) mid-
stream total pressure, b) midstream static pressure, and c) top wall
pressure: ——, with the lag model and – – –, without the lag model.

by the amplitudeof the backpressure.The computationalresults are
generally in agreement with the experimental results. No apparent
effect of the lag model can be observed for this weak-shock case.
The movement of shock location at different time instants within
one period is shown in Fig. 14. The shock moves upstream and
downstream with the backpressure � uctuation. It can be concluded
from the results that the lag model has almost no effect on the com-
putational results for the weak-shock case in which there is no � ow
separation.

Flow with a Strong Shock
The computational time–mean streamwise velocity and pressure

distributionsfor the case with Rp D 0:72 are shown in Figs. 15a and
15b, as well as the experimental results. In contrast to the weak-
shock case, the computational results by use of the lag model are
closer to the experimental data for this case. This demonstrates that
the lagmodel,which is effectiveforpredictingseparated� ow, yields
an improvement on the calculation.

Figures 16a–16c show the variationsof total and static pressures
at midstreamand thepressureon the topwall at x=hth D 5.836within
one oscillation cycle. In contrast to the results of the weak-shock

a)

b)

Fig. 17 Distributionsof amplitudeand phase angleof midstream pres-
sure, strong-shock case: a) amplitude and b) phase angle: r , experi-
ment; , with the lag model; and M, without the lag model.
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case shown in Figs. 12a–12c, the differences in pressure with and
without the lag model can be clearly seen. The streamwise distri-
butions of amplitude and phase angle of the midstream pressure for
the strong-shock case are shown in Figs. 17a and 17b, along with
the experimentaldata.Compared to the weak-shockcase, the ampli-
tude and phase angle of the time-dependentmidstream pressure are
no longer monotonically decreasing with the streamwise distance
.x=h th/ as the weak-shock results do. Here, they initially increase
and then decrease with x=hth after reaching their maximum values.
Figures 17a and 17b show signi� cant improvements by use of the
lag model.

IV. Conclusions
The lag model in combination with the baseline k–! turbulent

model is applied to simulate the two-dimensional steady and un-
steady convergent/divergent transonic diffuser � ows using a multi-
grid � nite volume method. For the unsteady � ow, the dual-time ap-
proach is used to achievetime accuracywith a second-orderimplicit
time-steppingmethod for both the Navier–Stokes and the turbulence
model equationsincludingthe lag equation.Two � owcasesare stud-
ied, one with a weak-shock wave and the other with a strong-shock
wave. Results are presented and compared with experimental data
and solutionsobtainedby othermethods. The main conclusionscan
be summarized as follows.

1)For � ows with littlenonequilibriumeffects,the lagmodeleffec-
tively reduces to the baseline k–! model. No signi� cant differences
between the results with and without the lag model are observed for
the weak-shock case studied in this paper.

2) Notably improved results are observed by using the lag model
for the strong-shock case, in which there is � ow separation, for
both steady and unsteady situations. For the steady case, the pre-
dicted separation length is remarkably more accurate than that
without the lag modi� cation and predictions by several other two-
equation models in the validation suite presented by Georgiadis
et al.14 For the unsteady case, predictions of both the magnitude
and the phase of the unsteady pressure along the diffuser agree sig-
ni� cantly better with experimental data than those without the lag
model.

3) The addition of the lag model does not pose extra numerical
dif� culties to existing time-marching codes. The lag model offers a
convenientand effectiveway to augment existing baselineone- and

two-equation turbulence models by providing a relaxation mecha-
nism for the turbulence eddy viscosity to adjust to its local equilib-
rium values. This nonequilibriumeffect is important for � ows with
separation and shock–boundary-layer interaction problems.
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