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Abstract
In this paper, numerical simulations of a flexible circular cylinder subjected
to a vortex-induced vibration (VIV) are conducted. The Reynolds number for
simulations is fixed at 1000. The finite volume method is applied for modeling
fluid flow with the moving meshes feature. The dynamic response of a flexible
cylinder fixed at both ends is modeled by the Euler–Bernoulli beam theory.
The comparison between two-dimensional (2D) simulations and 3D simula-
tions for the flexible cylinder shows that the maximum response amplitude of
the cross-flow oscillation is about 0.57D for 2D rigid cylinders (modeled by
a spring–damper–mass model) and 1.03D for flexible cylinders, respectively.
The results from 3D simulations are closer to previous experimental results.
Furthermore, the results obtained with various frequency ratios show that dif-
ferent wake patterns exist according to the frequency ratio, such as 2S mode,
2P mode and some more complicated modes. The wake pattern is different at
various sections along the cylinder length, due to the fact that the two ends of
the beam are fixed. The vibration of the flexible cylinder can also greatly alter
the three dimensionality in the wake, which is our research in future work, es-
pecially in the transition region for Reynolds number ranging from 170 to 300.

(Some figures may appear in colour only in the online journal)

1. Introduction

Vortex-induced vibration (VIV) of solid structures has been known since ancient times, and
remains a very important problem of fluid mechanics. The interest emanates primarily from its

3 Author to whom any correspondence should be addressed.

© 2012 The Japan Society of Fluid Mechanics and IOP Publishing Ltd Printed in the UK
0169-5983/12/045508+21$33.00 1

http://dx.doi.org/10.1088/0169-5983/44/4/045508
mailto:zjudengjian@zju.edu.cn
http://stacks.iop.org/FDR/44/045508


Fluid Dyn. Res. 44 (2012) 045508 Fangfang Xie et al

practical applications in a variety of engineering flows, such as transmission lines, suspension
bridges and heat exchangers. Due to the complexity of the vortex dynamics associated with
vortex shedding, a large number of studies have been carried out, as reviewed by Bearman
(1984), Sarpkaya (2004) and Williamson and Govardhan (2004, 2008). Experimental studies
of the VIV of circular cylinders, as well as some numerical investigations have provided many
fundamental insights. Most of the previous studies are focused on fluid forces on a vibrating
cylinder, vortex-shedding modes and synchronization regions for a freely vibrating cylinder,
three dimensionality and free-surface effects, the frequency dependence of the added mass
and the dynamics of cylinders with low mass damping. Moreover, aiming at studying the
complicated nonlinear wake–body coupling characteristics in VIVs, semi-empirical models
such as wake-oscillator models have been developed, and some advanced numerical methods
have been developed and applied to solve the fully coupled VIV (Gabbai and Benaroya
(2005)).

Researchers are seeking a combined parameter, like SG or m∗∗ξ , as a universal parameter
to couple the effects of both mass and damping on the dynamic response of the cylinder in
the VIV problem. Depending on mass-damping (m∗∗ζ ), it is well known that there exist two
types of amplitude response between the maximum response amplitudes Amax and the reduced
velocity U ∗. At a high mass-damping, Feng (1968) showed that there are two amplitude
branches, namely the ‘initial’ branch and the ‘lower’ branch, with a hysteretic transition
between the two branches. The jump in response amplitude is reflected by a significant jump in
the phase of the pressure fluctuations relative to body motion and the phase jump corresponds
to a change in the wake patterns, from 2S to 2P (Willamson 1988). However, at low mass-
damping (Khalak and Williamson 1996, 1997a, 1997b, 1999; Govardhan and Williamson
2000), it is associated with the existence of an upper branch of high amplitude response,
which appears between the initial and lower branches. The frequency of the lower branch
is not close to the cylinder natural frequency. Reducing mass leads to a significant increase
of the lock-in regime. In addition, it is found that the response branch relates to the wake
vortex-shedding mode. Within the initial branch, a single vortex is shed in each half cycle of
oscillation as the 2S mode. At the upper branch, two vortices are shed in each half cycle of
oscillation, which makes it compatible with the 2P mode, but the second vortex of each pair is
much weaker than the first one. At the lower branch, two vortices are shed in each half cycle
of oscillation as the 2P mode. It should be noted that most of the above results are obtained
with a 2D and rigid hypothesis of the cylinder, or the dynamic spring–damping–mass system
of the cylinder.

With increasing demands for a more comprehensive understanding of VIV in realistic
engineering problems, studies on the VIV problem have been expanded into 3D and flexible
cylinders during recent years. Deng et al’s (2007) numerical investigations provided details
on the wake characteristics associated with two circular cylinders arranged perpendicular to
each other in a uniform flow field. They found that the peak amplitude of vibrations for the
cruciform arrangement is lower than that for an isolated cylinder, and the resonance region
is wider than that of an isolated cylinder. A distinct vortex-shedding pattern in the wake is
studied as well. Moreover, the flexible cylinder supporting is another important factor that
affects the coupled flow-structural characteristics. For a flexible cylinder VIV, the cable-
like and beam-like structures are two generally accepted structural systems. If the tension
dominates, it is termed a cable, while if the bending rigidity dominates, it is termed a beam.
Results from Lee and Allen (2010) show that the vibration frequency of a cylinder rises
with the flow speed for a tension-dominated structure but does not rise significantly for a
bending rigidity controlled structure. In addition, the lock-in bandwidth is broad with rigidity
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controlled cases, indicating a weak linkage between the variation of vibration frequency and
the lock-in bandwidth.

In previous studies, the predictions of VIV for a tension-dominated cable have been
extensively conducted both experimentally and computationally. By using direct numerical
simulations, Newman and Karniadakis (1996, 1997) investigated the flow-induced vibration
of an infinitely long flexible cable. By comparing the forced cable with the VIV cables, they
found that the responses are different, and the divergence increases at high Reynolds numbers.
Evangelinos and Karniadakis (1999) also presented the direct numerical simulation results of a
vibrating rigid cylinder, a cable, and a beam at a Reynolds number of 1000. They found mixed
shedding patterns of 2S, 2P and P + S in the wake, and the amplitude of the cylinder vibrating
is around 1D, higher than that of the laminar cases (0.5D–0.6D). Huera-Huarte and Bearman
(2009a, 2009b) indicated that when the lowest tension is imposed on the model, its dynamic
response is very similar to that of a rigid cylinder, which could be clearly defined as initial,
lower and upper branches of response. As the tension is increased, it starts to behave like a
cable or a tension dominated structure. The lower branch disappears; thus all responses are
concentrated within the initial and upper branches. Furthermore, the vortex modes in the wake
of the oscillating cylinder are found to be dependent on the amplitude distribution along the
length of the model. Xu et al (2009) revealed that within the range of Reynolds numbers, the
vibration frequencies and amplitude to diameter ratios of the riser tested, three vortex modes
2S, 2P and P + S formed in the near wake of the riser. The vortex-shedding modes depend
on the Reynolds number, the vibration frequencies, and the amplitude to cylinder diameter
ratio.

Studies on bending stiffness dominated problems have also attracted much attention.
Experimentally, Brika and Laneville (1993, 1995, 1996) provided evidence of 2P to 2S mode
transition with a free vibrating flexible circular cylinder in its transversal direction. It was
observed that each branch of the loop was associated with a vortex-shedding mode. With a
flexible cantilever, Pesce and Fujarra (2000) and Fujarra et al (2001) observed a hysteretic
transition of amplitude response from an initial branch to a lower branch that is similar to
the elastically mounted or free oscillating cylinder. From the numerical simulation aspect,
the Euler–Bernoulli beam theory is extensively applied by many researchers. Meneghini
et al (2004) and Yamamoto et al (2004) applied the 2D discrete vortex method (DVM) to
visualize the vortex structure in the wake of a flexible vibrating cylinder. A 2S mode was
found associated with low amplitudes; it is changed to a 2P mode with large amplitudes.
The transition point varies with the reduced velocity. Huera-Huarte et al (2006) used a
finite-element method to investigate the force distribution along a flexible circular cylinder.
Huang et al (2010) studied long riser VIV in uniform/sheared currents using the time-domain
numerical simulation approach and found that the vortex-shedding pattern is mainly the 2S
type while its appearance varies significantly with different elevations along the risers.

As reviewed above, a few studies have been conducted to explore the flow mechanism
associated with flexible cylinder VIV. Limited studies on flexible cylinders are focused on
the vibrating response rather than the flow characteristic in the oscillating cylinder. In the
present study, a numerical study on a flexible cylinder VIV is carried out at a Reynolds
number of 1000. Apart from detailed discussion on the structural parameter influence on the
dynamic response of the flexible cylinder, the wake vortex structures will be fully investigated.
To simply the problem, the mass ratio of the cylinder is fixed as 10 and the dominant
motion is assumed in the cross-flow direction. To obtain different responses of the coupled
flow–structure system, we vary the structure’s bending stiffness to model the behavior of a
fixed–fixed flexible cylinder. Although the above limitations exist in the present study, we
believe that there will be some qualitative results, and these will provide new insights into
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Figure 1. Geometrical model and computational domain.

the mechanism of the flexible vortex vibrating cylinder. The paper is organized as follows.
First the physical models, the fluid solver, the structure solver and the coupling method are
introduced; then the numerical results of the VIV for a rigid and flexible cylinder are both
presented and discussed. Conclusions are drawn in the final section.

2. Physical models and numerical methods

2.1. Computational domain and boundary conditions

In this paper, a cuboids flow field is considered, and the detailed geometry configuration is
depicted in figure 1. Here, XI (12D) and XO (25D) are distances from the inlet and outlet
relative to the cylinder center. YD (16D) and ZD (12D) denote the lateral and span-wise
dimensions of the computational domain, respectively.

The boundary conditions employed for the present investigation are specified below.
At the inlet, a constant stream-wise velocity is imposed with other velocities set to zero,
and the nonreflecting boundary condition is imposed at the outlet. At the cylinder wall, the
impermeability and no-slip condition is applied for velocity. In order to simulate an infinite
long cylinder, the free-slip conditions are imposed at both the transverse and span-wise
computational boundaries. The pressure Neumann condition is applied to the inlet, surface of
the cylinder and the pressure Dirichlet boundary condition is applied to the outlet boundary.

The mesh is non-uniform at the x–y plane but uniform in the z-direction. The grid is
clustered near the cylinder and the spacing is increased with the distance increasing away
from the cylinder surface. The first grid size near the cylinder is set to 0.01D, and the time
step is 0.005 according to the Courant–Friedrichs–Lewy (CFL) condition.

2.2. Finite-volume method on moving meshes

The fluid flows are solved using the finite-volume method with moving meshes (Batina 1990;
Ferziger and Peric 1995). The moving finite-volume cells must be adjusted to the time-varying
shape of the interface. The Laplace equation-based (Jasak and Tukovic 2007) deforming mesh
approach is used in this study where the internal control-volume (CV) vertices are moved
based on a prescribed motion of the boundary vertices while the topology of the mesh remains
unchanged. The displacement equation (Laplace equation) for mesh moving is discretized at
the vertices of the finite-volume mesh and solved by the finite-element method.
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An incompressible Newtonian fluid is assumed, for which the integral form of the
governing equations with moving meshes is given by

d

dt

∫
VP

dV +
∫

VP

∇ · (U − Ub) dV = 0, (1)

∫ t+1t

t

[
∂

∂t

∫
VP

UdV +
∫

VP

∇ · ((U − Ub)U ) dV −

∫
VP

∇ · (ν∇U ) dV

]
dt

= −

∫ t+1t

t

(∫
VP

∇ p dV

)
dt, (2)

where U is the fluid velocity, Ub is the boundary velocity, the subscript P represents the cell
values, and VP is the cell volume. As the volume VP is no longer fixed in space, its motion is
captured by the motion of its bounding surface S by the velocity Ub.

The method is based on discretizing the integral form of governing equations over an
arbitrary moving volume V. After the general form of Gauss’s theorem is applied and the
second-order finite-volume discretization is used, equation (2) is transformed into sums of
face integrals and approximated to second order using the mid-point rule.

3(UPVP)
n
− 4(UPVP)

o+(UPVP)
oo

dt
+

∑
f

(F − FS)U f −

∑
f

ν f S · (∇U ) f = −(∇ p)VP, (3)

where (UPVP)
n
= (UPVP)(to+δt), (UPVP)

o
= (UPVP)(to), (UPVP)

oo
= (UPVP)(to

− δt), F =

S · U f is the fluid flux, FS is the mesh motion flux and f is the face value. However,
the fluid flux F is usually obtained as a part of the solution algorithm and satisfies the
conservation requirements. The face-center values of all dependent variables are calculated
using linear interpolation of the neighboring cell-center values. The second-order upwind
spatial discretization scheme is applied to the convective term and the second-order central
differencing corrected scheme is used for the viscous term. The temporal discretization of all
equations is performed by using the second-order accurate implicit three-time-level scheme
as the backward scheme. One can refer to Ferziger and Peric (1995) for details of this finite-
volume method.

The relationship between the rate of change of the volume V and the velocity Ub is defined
by the so-called space conservation law (SCL) (Demirdzic and Peric 1988).

d

dt

∫
VP

dV +
∫

VP

∇ · UbdV = 0. (4)

The discretized counterpart of the SCL where the backward scheme is used for temporal
discretization reads

3V n
P − 4V o

P +V oo
P

1t
−

∑
f

FS = 0. (5)

The mesh flux FS is calculated as the volume swept by the face f in motion during the
current time-step rather than from the grid velocity Ub, making it consistent with the cell
volume calculation.

It is noted that the discretized form of momentum equation (3) can be transformed into
the form of a linear algebraic equation, which can be solved using the geometric agglomerated
algebraic multi-grid solver. The pressure is solved from the pressure Poisson equation, which
is derived by applying the divergence operator to the momentum equations and discretized
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by a second-order central difference scheme, and then a Gauss Seidel iteration method is
applied to solve it. In this study, the Pressure Implicit with Splitting of Operators (PISO)
procedure proposed by Issa (1986) is used for dealing with the pressure–velocity coupling.
The discretized mesh motion equation governed by a Laplacian as described before is
diagonally dominant, allowing the use of the Incomplete Cholesky preconditioned Conjugate
Gradient (ICCG) iterative solver.

2.3. Cylinder motion equation

To validate the fluid solver involving a moving mesh, we firstly study a 2D rigid cylinder
freely oscillating in transverse directions. After that, a flexible 3D cylinder is investigated and
the interactions between the cylinder and its surrounding fluid are numerically examined. In
this section, the governing equations of the cylinder in both cases are introduced.

2.3.1. Two-dimensional spring–damper–mass model. The transverse displacement of the
cylinder,y(t), due to the fluid force is modeled using a spring–damper–mass model. Thus, the
cylinder’s transverse motion equation is given by

mÿ+cẏ+ky = Fy, (6)

where m is the cylinder mass, c is the damping coefficient and k is the structural stiffness. The
second-order Lax–Wendroff method is used to compute the position of the cylinder and the
Euler explicit method is adopted to predict the body velocity, as shown below:

yn+1
= yn+ẏn1t+

1

2
ÿn1t2, (7)

ẏn+1
= ẏn+ÿn1t, (8)

where

ÿn
=

Fy

m
−

c

m
ẏn

−
k

m
yn. (9)

2.3.2. Dynamic equation for a 3D flexible cylinder. To simplify the problem, the vibration of
a flexible cylinder with its two span-wise ends being fixed is modeled by the Euler–Bernoulli
beam theory. Thus the damping and tension characteristics along the beam are not considered.
Only the cylinder blending at cross-flow direction is included, which is given by

ρl
∂2 y(z, t)

∂t2
+E I

∂4 y(z, t)

∂z4
= f (z, t). (10)

The cylinder is fixed at both ends; therefore the boundary condition is specified as

y(0, t) = 0, y(l, t) = 0,
∂y(0, t)

∂z
= 0,

∂y(l, t)

∂z
= 0, (11)

where ρl is the mass per unit length of the cylinder, E I is the stiffness, l is the length of the
cylinder, and f (z, t) is the distributed lift force on the cylinder.

The finite-difference method is utilized to discretize the beam equation. The central
difference scheme with lagged approximation of the first derivative is used because of its
popularity in structural dynamics. The finite-difference beam equation of the ith node is
represented as

∂2 yi

∂t2
=

fi

ρl
−

E I

ρl

yi+2 − 4yi+1+6yi − 4yi−1+yi−2

1z4
, (12)
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where yi is the displacement at the ith node, and 1z is the finite-difference grid size
(1z = l/n), where n is the number of elements or segments along the span-wise direction.

The boundary condition is imposed by the central difference method with two additional
virtual nodes at i = −1, i = n+1. Note that the physical boundary conditions at the fixed ends
are described as zero displacement and zero gradient, respectively:

y0 = 0, yn+1 = 0, y−1 = y2, yn−1 = yn+1. (13)

The influence of the number of elements on the solution and the verification of numerical
schemes for the structure model are considered. The free vibration of the two ends fixed beam
is studied. The frequency equation is expressed as

cos λ cosh λ − 1 = 0. (14)

The first, second and third roots of the above equation are 4.73, 7.854 and 10.996.
For i > 3, equation (14) can be simplified as cos λ − 1 = 0; thus the root of the equation is
λi = (i+1/2)π . The corresponding nth eigenfrequency is

ωi = (λi )
2

√
E I

ρll4
. (15)

The nth eigenfunction φi (x) is presented as

φi (x) = cos βi x − cosh βi x+ηi (sin βi x − sinh βi x), (16)

where βi = λi/ l and where ηi is defined as

ηi = −
cos βi l − cosh βi l

sin βi l − sinh βi l
. (17)

We select the first eigen-frequency to be approximately equal to 2π fo, where fo is
the natural vortex-shedding frequency of the flow around a rigid cylinder at Re = 1000.
Based on that, the modulus of elasticity and first eigen-mode can be theoretically calculated.
With the first eigen-mode employed as the cylinder’s initial deformation, three cases with
various N as 6, 12 and 24 are compared. The vertical displacements of each center point are
shown in figure 2 along with corresponding oscillating frequencies. The predicted oscillating
frequencies are 0.201, 0.211 and 0.22, respectively. Compared with the assumed first eigen-
frequency, the errors of those computed frequencies are 8.65, 4.09 and 0% for N = 6, 12
and 24, respectively. To save computational time and satisfy certain convergent and accurate
requirements, it is recommended that n = 12 is the best choice in this case. However, it
should be pointed out that flow is solved with N = 36 points in the span-wise direction,
which is different from the segments used for the structural solver. Such mesh points are fine
enough to capture the 3D flow characteristics of a cylinder. With all finite-difference equations
established for all nodes, the fixed–fixed beam system can be solved by using the Runge–Kutta
algorithm for the internal nodes (i = 1 ∼ n − 1) along with the specified boundary conditions.
The node displacement and velocity are updated at each time step.

2.4. Fluid–structure coupling method

The loosely coupled method (Schulz and Kallinderis (1998)) is utilized between the fluid and
the structural solvers. In figure 3, a schematic view of the coupling process is given. After
initialization, the flow field is firstly solved using the computational fluid dynamics (CFD)
flow solver. The fluid forces on the cylinder surface are computed, which are passed to the
CSD structural solver to determine the deformation of the cylinder wall. The CFD mesh is then
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Figure 2. Vertical displacements of the center points and their corresponding frequency for
different cases.

updated according to the latest CSD mesh. Such a fluid–structure interaction (FSI) iteration
loop is repeated during each time step for this unsteady problem. Various tests have shown that
they will converge to the final solution when the time step is smaller than 0.005 s in the present
study.

3. Results and discussion

In this section, the computed results for a 2D rigid cylinder VIV will be firstly presented, in
which the dynamic response associated with different frequency ratios, the beating behavior
and the lock-in phenomenon will be compared with available published data. Next, we will
focus on a 3D flexible cylinder simulation. The results will include the comparison with a rigid
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Figure 3. Flow chart of coupled solution procedure.

Table 1. Maximum response amplitude of the vibrating circular cylinder.

Reference Methods m∗ξ A (peak)

Griffin (1992) Experiment – 1.0
Evangelinos and Karniadakis (1999) 3D Code (DNS) 0.00 0.74
Evangelinos and Karniadakis (1999) 2-D Code (DNS) 0.00 0.55
Schulz and Kallinderis (1998) 2D Code (RANS) 0.013 0.67
Present study 2D code (Laminar) 0.013 0.56
Present study 2D code (Laminar) 0.00 0.57

cylinder and investigation on the contribution of frequency ratio to the dynamic response of
the cylinder and vortex patterns in the wake.

3.1. Two-dimensional rigid cylinder VIV

While it is not the main focus of this study, the 2D simulation of the VIV for a rigid cylinder
at different frequency ratios is studied first as a basis for comparison with other numerical and
experimental results. In our previous studies, a finite-difference method based solver as well
as an immersed-boundary method based solver have been implemented in the simulations of
VIV for both 2D and 3D cylinders (Deng et al (2005), Deng et al (2007)). In the present study,
a finite-volume method based solver is used; detailed code verification is therefore carried out.

By using a one degree-of-freedom structure model (spring–damper–mass model), the
VIV for a rigid cylinder is simulated. The current simulations are compared with other
computational and experimental results, as shown in table 1, in which all numerical and
experimental results are obtained at Re = 1000. Compared to the numerical results by
the 2D DNS code by Evangelinos and Karniadakis (1999), the present results show good
agreement in terms of the maximum response amplitude with and without damping. However,
the response amplitude is lower than that of the 3D DNS result by Evangelinos and
Karniadakis (1999), and the 2D RANS result by Schulz and Kallinderis (1998). It is due to
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the unsolved three-dimensionality turbulence influence in the present 2D study. Furthermore,
this difference highlights the necessity of implementing 3D studies.

Figure 4 shows force coefficients and displacement time histories at different frequency
ratios ( fn/ fo) with a mass-damping ratio of 0.0013, where fn is the natural frequency of the
cylinder and fo is the vortex-shedding frequency for a rigid cylinder. The beating behavior
can be clearly observed in figure 4(a) and at the initial stage in figure 4(b). For fn/ fo = 1.08,
the response behavior changes to another state, in which the response amplitude reaches a
value of 0.53. Over the region of fn/ fo = 1.06 − 0.89, it is noted that the cylinder vibrates at
a certain frequency and in a narrow range of response amplitudes, indicating that the vortex-
shedding frequency is fully locked on to fo. In the lock-in region, the response amplitudes
vary in a small range of 0.52–0.56. For fn/ fo = 0.82, the response amplitude falls to a small
value and the system is unlocked.

Instantaneous vorticity fields in the wake of an oscillating cylinder at various frequency
ratios are shown in figure 5. At low transverse oscillating amplitude, the classical Kármán
shedding (2S) is observed. Once the cylinder response jumps to a large amplitude, it is
associated with the C(2S) mode of vortex shedding. The C(2S) mode is very similar to
the 2S mode except that the vortices coalesce in the far wake. This can be obviously seen,
for example, at fn/ fo = 1.08, at which point the vortex-shedding frequency approximately
matches the natural frequency of the cylinder. The transverse spacing of the vortex street
for 2S and C(2S) modes is slightly different. In the lock-in region, the width of the street
becomes large as the frequency ratio increases and then becomes small with further increase
of frequency ratio. This is because the branch switches from the initial branch to the lower
branch. When the amplitude reaches the maximum value at a frequency ratio of 0.89, a P + S
mode with one vortex pair and one single per cycle can be seen in the near wake, and an
irregular vortex mode forms in the far wake. The frequency ratio, fn/ fo = 0.82, marks the
end of the synchronization, and the vortex mode returns to the 2S mode for a rigid cylinder.

3.2. Three-dimensional flexible cylinder VIV

3.2.1. Comparison with a rigid cylinder. In order to understand well the dynamic response
of a flexible cylinder, 3D simulations of the flow past a rigid circular cylinder and a flexible
cylinder at a specific frequency ratio of fn/ fo = 0.9 are carried out for comparison, where fn

is the first eigen-frequency of a flexible cylinder at the specified modulus elasticity. It should
be noted that the dynamic response of this cylinder is governed by simplified Euler–Bernoulli
beam theory, with only the cross-flow direction motion being allowed.

Compared to the rigid cylinder, the flexible cylinder shows its shape deformation due to
the unsteady forces related to vortex shedding. Five sections of the cylinder along the span-
wise direction are picked out for comparison. They are z/D = 2, 4, 6, 8 and 10. In figure 6
the instantaneous cross-flow displacements and the spectral analysis of the displacement are
shown. At all sections, a clear single peak can be identified and they turn out to be the same as
the excited structural frequency of f = 0.195. Figure 6(c) shows the cross-flow motion every
(1/10)th of a period, where a clear first mode presented by a half period of sinusoidal mode
shape is observed.

In this paper, a Lambda-definition from Jeong and Hussain (1995) is introduced to
identify the core region of the vortex. In figure 7, 3D vortex structures are shown for two cases:
(a) the wake of the rigid cylinder maintains the primary Kármán vortex and a small quantity of
stream-wise vortex pairs; (b) the wake along the span-wise direction of the flexible cylinder is
disordered. The vortex structures exhibit much more 3D instability. It should be noted that the
differences of three dimensionality between rigid and flexible cylinders can only be roughly
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Figure 4. Force coefficients and displacement time histories at different frequency ratios.

compared, due to the poor resolution along the span-wise direction of the cylinder. With a
closer observation, different vortex structures at five different sections along the cylinder are
presented in figure 8. Due to the vibrating movement of the flexible cylinder, the wake patterns
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Figure 5. Instantaneous vorticity contours at various frequency ratios (a) fn/ fo = 1.27, (b) fn/ fo =

1.08, (c) fn/ fo = 1.086, (d) fn/ fo = 0.99 (e) fn/ fo = 0.94, (f) fn/ fo = 0.89, (g) fn/ fo = 0.82 and
(h) fn/ fo = 0.76.

are expected to vary in different sections along the length. The same characteristic has also
been observed by previous experimental studies of Flemming and Williamson (2005) and
Huera-Huarte and Bearman (2009b).We can figure out that: (a) In the wake of the flow of a
rigid cylinder, the main vortex structure is the classical vortex street, with two single vortices
per cycle or 2S patterns at different span-wise positions. (b) In the wake of a flexible cylinder,
the flow structures are more complicated. A 2P mode with two vortex pairs per cycle can
be seen in the wake of the vibrating flexible cylinder, especially at the middle section. At
z/D = 2 or 10, the 2P mode changes into a 2S mode with a single vortex per cycle in the
far wake. The transverse spacing between the vortices varies with the variation of response
amplitude along the length. At z/D = 6.0 (the middle section), the width of the vortex street
is largest corresponding to the largest transverse response of the cylinder.

Moreover, the time histories of the time-averaged force coefficients and the spectral
analysis for instantaneous lift force are presented in figure 9. The mean drag coefficient for
the flexible cylinder is higher than that of the rigid cylinder. In contrast, the peak-to-peak
value of the lift coefficient for the flexible cylinder is smaller than that of the rigid cylinder.
The increase of drag coefficient is probably due to the increase for projected area of the
flexible cylinder in one vibrating period, while the decrease for peak-to-peak value of the
lift coefficient would be attributed to the different flow patterns along the span (referring to
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Figure 6. Dynamic response of a flexible cylinder: (a) instantaneous non-dimensional cross-flow
displacements, (b) spectra analysis of (a) and (c) cross-flow motion.

Figure 7. Three-dimensional vortex structure for two cases: (a) rigid cylinder and (b) flexible
cylinder.

figure 8) and the poor correlation along the span. From the spectrum analysis in figure 9, it is
found that one peak value exists for either a rigid cylinder or a flexible cylinder. The frequency
peak (0.189) in the flexible cylinder is near the excited structural frequency (0.195). The
counterpart for the rigid cylinder is related to the natural vortex-shedding frequency (0.2167).
It is found that the vortex-shedding frequency of the vibrating cylinder is closer to the excited
structural frequency, indicating that the structure’s natural frequency dominates the vibration
as well as the flow wake.
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Figure 8. Instantaneous vorticity contours at different z-positions: (a) rigid cylinder and (b) flexible
cylinder.
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Figure 9. Time histories of force coefficients (left) and the corresponding spectra (right) for two
cases: the flexible cylinder (top) and the rigid cylinder (bottom).

3.2.2. Frequency ratio effect. Research on VIV is usually conducted by changing either the
reduced velocity (thus Reynolds number) or the frequency ratio. Experimentally, the inflow
velocity of the wind or water tunnel can be conveniently changed. Numerically, varying the
natural frequency of the structures is preferred. This is also adopted in this paper. As indicated
in equation (15), the eigen-frequency of the flexible cylinder is determined by the stiffness (EI)
under a given mass ratio. With the variation of the stiffness, the structural frequency and thus
the ratio of the structural frequency to the vortex-shedding frequency of a rigid cylinder would
change. The effect of this change is thus investigated in the following context.

a. Dynamic response

In section 3.2.1, it was shown that the spectra of cylinder displacement at different span-
wise positions are identical. Thus x/Z = 5.0 is selected to compare the response amplitudes
of a cylinder at different frequency ratios. Figures 10 and figure 11 provide the dynamic
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Figure 10. The dynamic response at Z/D = 5 for different frequency ratios.

responses and the amplitude spectra analysis at x/Z = 5.0 for different frequency ratios.
When 0.3 < fn/ fo < 0.5, the time history of displacement shows an irregularity, especially
at fn/ fo = 0.3, where more than two peak values in the spectra exist. One is smaller than
the excited structural frequency and the other is 0.189, which is located between the smaller
peak frequency and the excited structural frequency. For fn/ fo = 0.75, the time history of
displacement becomes periodic. It is found that there is only one peak and the frequency is
also a little smaller than the excited structural frequency. Judging from the spectra and the
wake flow patterns, this corresponds to a transition point entering locked-in status. For 0.75 <

fn/ fo < 0.96, the flow is in synchronization. From figures 10(d)–(g) and figure 11(d)–(g),
it is demonstrated that the amplitude peak of spectral analysis is related to the vibrating
displacement amplitude. At fn/ fo = 0.85, the displacement shows a maximum value of 1.03,
as well as that in spectral analysis. After that, the beating behavior appears and the vibrating
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Figure 11. Amplitude spectra of displacement at Z/D = 5 for different frequency ratios.

displacement amplitude falls. Two peak frequency values in the spectra appear again and
the behavior is the same as that in 0.3 < fn/ fo < 0.5. It is not surprising that one of the
peak frequency values is 0.189, too. We can conclude that the fluid and the structure system
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affect each other out of the synchronization and the excited structural frequency dominates
the wake flow in the synchronization. However, quantitative explanation for this peak value
needs further discussion in near future studies.

The amplitude of vibration as a function of the reduced velocity is exhibited in figure 12.
The numerical 3D flexible results are compared to the 2D and 3D rigid results and the
experimental results by Khalak and Williamson (1996). There are several differences in
parameters between the present study and others. The mass ratios in the experiments are 2.4
and 10.3, while in the present study the mass ratio is 10. The values of the mass damping for
the present 2D and 3D rigid results and the previous experimental results are both 0.0013. The
experiments were carried out on a rigid cylinder at a high Reynolds number of about 10 000,
while our study is based on a low Reynolds number of 1000.

First of all, as the comparison between our 2D results and experimental results reveals,
the maximum amplitude in our 2D results is about 0.57D, well below the maximum amplitude
of 0.97D found by Khalak and Williamson (1996). The high-amplitude model for the lock-
in region is not observed in the 2D results. However, despite the significant differences
between 2D simulations and experiments, which have also been observed in Meneghini et al
(2004), some key phenomena can also be discovered by 2D simulations. As compared to the
numerical results of 2D simulations, our 3D rigid results illustrate not too many differences
from other available results, with a slightly wider lock-in region range and similar maximum
amplitudes that coincide well with the 3D flexible simulation results if U/ f ∗

n D > 6.0. In
addition, our 3D flexible simulations present less divergence with the experiments. There
are three branches in the 3-D results that match well with the experimental results. The
maximum amplitude for U/ f ∗

n D = 5.4 in the 3-D simulations is 1.03D, a little higher than
the value of 0.97D for U/ f ∗

n D = 5.7 in experiments at m∗
= 10.3, where fn is the excited

structural frequency. Good agreement is also reached in the region of the initial branch for our
simulations with the experiments. We attribute this difference between our 2D simulations
and previous experiments to 3D effect or turbulence. Nevertheless, the difference between
the 3D simulations and previous experiments is due to the fact that the circular cylinder in
our 3D study is regarded as an Euler–Bernoulli beam but a rigid cylinder in experiments.
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Figure 13. Three-dimensional vortex structure for three typical frequency ratios: (a) fn/ fo = 0.6,
(b) fn/ fo = 0.85 and (c) fn/ fo = 1.1.

Figure 14. Planar vortical contours at different positions along span-wise direction: (a) fn/ fo =

0.6, (b) fn/ fo = 0.85 and (c) fn/ fo = 1.1.

Except for the tiny divergence discussed above, the amplitude response in our study for
the lower branch is below the experimental results. As for the larger reduced velocity, the
corresponding structural excited frequency is smaller, so the dynamic response would be
distributed in several frequency components, leading to smaller response amplitude compared
to the rigid cylinder in experiments. Therefore, the divergence is much more obvious as shown
in figure 12 for large reduced velocity. It is noted that the main purpose for figure 12 is not to
make a quantitative comparison with experiments, since the limits for the model used in this
paper have been discussed above.

b. Three frequency ratios

As the frequency ratio is close to the resonance value, the cylinder vibration begins to affect
the vortex pattern in the wake. Comparisons of the vortex pattern for three typical frequency
ratios in the wake of a flexible cylinder are presented in figure 13. Figure 14 exhibits the planar
vortical contours at different positions along the span-wise direction. These three frequency
ratios are 0.6, 0.85 and 1.1, which represent three different branches, i.e. lower branch, upper
branch and initial branch, respectively as shown in figure 12. For the frequency ratio of 0.6,
the flexible cylinder vibrates at small amplitude and most of the vortex-shedding modes are
clearly 2S patterns. This is because at a low frequency ratio, the cylinder behaves more stiffly,
which is closer to a rigidly mounted cylinder or a fixed cylinder. However, at a frequency ratio
of 0.85, the flexible cylinder vibrates more vigorously and the wake flow is very unstable. The
stream-wise vortices can be obviously observed staggering with the span-wise vortex tube. A
2P mode of the vortex pattern can be observed at the planar vortical contours. At a frequency
ratio of 1.1, the flexible cylinder returns to its slight vibration state, and the vortex pattern
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(a) (b)

Figure 15. Planar vortical contours at different positions along span-wise direction for fn/ fo =

0.75: (a) tU/D = 30 and (b) tU/D = 100.

turns back to a 2S mode but at the plane z/D = 9, a 2S mode is in the transition to 2P mode
and the small vortex in the pair is much weaker than the big one.

From figure 12, it is noted that at U/ f ∗
n D = 6.1529, or fn/ fo = 0.75, there is a jump from

the upper branch to the lower branch. This jump can also be observed in figure 10(d), and it
is worth analyzing this transition. Figure 15 shows the instantaneous planar vortical vortex
patterns at two different time steps: tU/D = 30 and tU/D = 100. It is apparent that the 2S
mode dominates for tU/D = 30, while one vortex of the second vortex pair immediately
shedding from the cylinder starts to split into two single vortices at tU/D = 100. A hybrid
pattern combined with 2S mode and 2P mode and some disordered vortex structures appear at
different positions along the flexible cylinder. The reason that causes such complicated vortex
patterns at this frequency ratio, as well as the unstable wake flow, may be associated with the
branch transition and the large amplitude of vibration.

4. Conclusions

In this paper, a numerical simulation of a flexible circular cylinder subjected to VIV is
conducted. Conclusions can be drawn as follows:

1. Without a turbulence model, 2D simulations are inadequate to accurately predict the
overall flow nature on both the response envelope and the vortex-shedding mechanism,
even at relatively low Reynolds numbers.

2. Despite the limits that the beam model holds in this paper, the general trend of the
computed amplitude versus reduced velocity curve agrees well with the experimental
results for free vibration of a rigid cylinder at low mass-damping.

3. The comparison between a fixed cylinder and a flexible cylinder shows that the vibration
significantly altered the three dimensionality in the wake. The stream-wise vortex
structures are enhanced especially with large response amplitude cases or within the
resonance region.

4. The results for various frequency ratios show that different wake patterns appear
according to the various frequency ratios, such as 2S mode, 2P mode and some more
complicated modes. The wake pattern would be different at the different sections along
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the span-wise length of the cylinder, due to the fact that the two ends of the beam are
fixed.

It is worth pointing out that the Reynolds number in the present study is 1000, at which
the three dimensionality is expected to be fully developed. Further investigations on such a
3D effect for a flexible cylinder VIV are necessary.
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