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1. Introduction

Ray-finned fish distinguish themselves from other 
aquatic animals by the composite design of their 
fins featuring soft membranes supported by bony 
rays [1]. These fins are important not only for steady 
locomotion, but also for maneuvering, motion 
stabilizing and sensing, during which a fish can 
adjust the fin shape and orientation to vector the 
hydrodynamic forces [2]. In terms of morphology, 
fish fins fall into two categories: paired fins (pectoral 
fin and pelvic fin) and median fins (dorsal fin, anal 
fin and caudal fin). By coordinating the movements 
of different fins, ray-finned fish exhibit a great 
variety of locomotion modes, among which the 
fin-activated swimming style attracts increasing 
interests from scientists and engineers as it provides 
a promising prototype for biomimetic propellers. 
Indeed, fin-activated swimming mode requires little 

body deformation and thus greatly simplifies the 
mechanical design [3].

Due to the important role it plays in locomotion, 
caudal fin has been extensively studied both exper-
imentally [4–11] and numerically [12–17] over the 
past decades. Traditionally, it is either considered as an 
extension of the fish body or modeled as a rigid or elas-
tic flapping foil. By using uniform materials and two 
DOF motions (e.g. heave and pitch), the simplification 
may severely compromise the evaluation efficiency, 
maneuverability and controllability of the system. In 
fact the caudal fin of bony fish has complicated inter-
nal structure [1, 18], allowing it to perform multiple 
DOF motions that can generate locomotion forces in 
the lateral, vertical and forward directions [19, 20]. 
Structurally, a caudal fin is composed of a soft and thin 
collagenous membrane supported by bony fin rays. 
The Young’s modulus of the collagenous membrane 
is much smaller than that of the embedded rays, thus 
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Abstract
In this paper, we present a numerical model capable of solving the fluid-structure interaction 
problems involved in the dynamics of skeleton-reinforced fish fins. In this model, the fluid 
dynamics is simulated by solving the Navier–Stokes equations using a finite-volume method 
based on an overset, multi-block structured grid system. The bony rays embedded in the fin are 
modeled as nonlinear Euler–Bernoulli beams. To demonstrate the capability of this model, we 
numerically investigate the effect of various ray stiffness distributions on the deformation and 
propulsion performance of a 3D caudal fin. Our numerical results show that with specific ray 
stiffness distributions, certain caudal fin deformation patterns observed in real fish (e.g. the cupping 
deformation) can be reproduced through passive structural deformations. Among the four different 
stiffness distributions (uniform, cupping, W-shape and heterocercal) considered here, we find that 
the cupping distribution requires the least power expenditure. The uniform distribution, on the 
other hand, performs the best in terms of thrust generation and efficiency. The uniform stiffness 
distribution, per se, also leads to ‘cupping’ deformation patterns with relatively smaller phase 
differences between various rays. The present model paves the way for future work on dynamics of 
skeleton-reinforced membranes.
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the bending stiffness of the caudal fin is mainly deter-
mined by those rays. The non-uniform bending stiff-
ness of each ray and the differences among the stiffness 
of different rays lead to anisotropic structural proper-
ties. Apart from this feature, these fins also possess two 
other characters associated with the multi-degree-of-
freedom control over the fin surface. The first one is 
the sophisticated musculature system attached to the 
rays. These muscles can work independently, enabling 
individual actuation of each ray. The second charac-
ter is the unique bio-mechanical design of the fin rays 
themselves. According to previous morphological 
studies [20, 21], a fin ray has a bi-laminar structure and 
embedded tendons. By pulling the tendons, a fish can 
actively change the curvature and bending stiffness of 
each ray.

Owing to the capability in force generation, fish 
fins attract much attention from researchers in biol-
ogy, engineering, and other related fields. New exper-
imental techniques allow them to conduct live fish 
experiments to visualize and reconstruct the fin move-
ments, the surrounding flow field, and the muscle 
activities [20, 22, 23–27]. Based on these studies it was 
concluded that the dynamics of fish fins are essentially 
3D with multiple DOF. For example, the caudal fin of 
the bluegill sunfish (Lepomis macrochirus) possesses 
morphological symmetry, but it functions asymmetri-
cally with a larger lateral excursion at the dorsal lobe 
[23]. Besides, the bluegill sunfish can modulate the cau-
dal fin shapes (e.g. cupping and ‘S’-shape) to achieve 
various maneuvering behaviors [27]. Although exper-
iments using live fish shed light on the kinematics and 
hydrodynamics of fins, the disadvantages and limita-
tions of this approach are also obvious [8]. Primarily, it 
is impossible to study the effect of individual traits on 
the performance. Another limitation is the lack of suf-
ficient diversity among extant species. To address these 
issues, an alternative method is to construct fin-like 
robotic devices [28–31]. This approach allows more 
freedom in alternating the parameters (e.g. geometry, 
material properties, and kinematics) so that the effect 
of each parameter can be isolated [22]. Park et al [28] 
experimentally examined a biomimetic caudal fin with 
various shapes and bending stiffness to identify the 
optimal kinematic condition maximizing the thrust 
generation. They concluded that the maximum thrust 
was achieved when the phase difference between the 
driving motion and the passive bending motion was 
close to 90°. Nevertheless, the fin in their experiment 
was constructed with uniform material, which is very 
different from the ray-strengthened caudal fin consid-
ered in the present paper. Esposito et al [30] designed a 
more complicated robotic caudal fin based on bluegill 
sunfish. With six individually controlled and activated 
flexible fin rays, this mechanical caudal fin can repro-
duce both symmetrical and asymmetrical deforma-
tion patterns observed in experiments. Among these 
motions, the cupping motion was found to generate 
the largest mean thrust in most cases. Larger thrust 

was obtained with stiffer fin rays and higher flapping 
frequency. It was also demonstrated that the differ-
ence between various motion patterns was most pro-
nounced at lower motion frequency and higher ray 
flexibility. Besides, their results also indicate that there 
are different optimal ray stiffnesses under different 
scenarios such as motion program, flapping frequency 
and Reynolds number.

From the perspective of underwater robotics 
design, it would be beneficial if we could explore a 
large parameter space to find the optimal combina-
tion. However, neither studies on live fish nor those 
using mechanical devices allow this. For example, 
the bending stiffness of the caudal fin plays a crucial 
role on its performance, however, we do not know if 
the caudal fins of live fish are at the optimal flexibility. 
Although mechanical devices can be constructed with 
different structural properties, they are still subjected 
to the availability of materials. These restrictions can 
be circumvented in computational modeling. Moreo-
ver, numerical simulations can provide holographic 
information of the flow field as well as physical insight 
of the fluid-structure interactions. The advantage of 
examining ‘what if’ type of questions makes the com-
putational modeling more appealing compared with 
experiments [32]. With the advancement of high-per-
formance computers and high-fidelity numerical algo-
rithms, computational modeling has become an indis-
pensable complement to experimental studies [32, 33].  
With sophisticated computational fluid dynam-
ics (CFD) tools, some researchers have numerically 
analyzed the hydrodynamics of a highly deformable 
fish fin [34, 35] and the fin-body/fin-fin interactions  
[36, 37]. In these simulations, the motions of the fish 
fins are prescribed based on experimentally recorded 
data. However, as mentioned above, the fin rays are 
highly flexible and can be actively controlled, thus 
strong fluid-structure interactions are involved in 
fish locomotion. To address this, Zhu and Shoele [38] 
developed a fully coupled fluid-structure interaction 
model to investigate the performance of a ray-strength-
ened caudal fin, where the fin rays were represented as 
nonlinear beams with uniform elasticity and the flow 
around the caudal fin was assumed to be inviscid and 
resolved with a boundary-element method. By indi-
vidually controlling the rotation of each ray at the basal 
end, the caudal fin can accomplish both homocercal 
(symmetrical dorsal-ventral motion) and heterocercal 
(asymmetrical dorsal-ventral motion) modes. In both 
cases, they found that flexibility can greatly enhance 
the thrust generation by introducing an effective pitch 
motion and improve the propulsion efficiency due to 
the reduction of lateral force. Besides, passive defor-
mation also reduces the sensitivity of propulsive per-
formance to the kinematics of the fin. With the same 
model, they also examined the propulsion perfor-
mance of skeleton-reinforced pectoral fins in labriform 
swimming [39, 40]. However, the flows involved in fish 
locomotion are often dominated by boundary-layer  
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separations and vortex-based mechanics, which are a 
direct effect of viscosity. Although the inviscid mod-
els are computationally inexpensive and allow a quick 
evaluation of the key flow features over a large param-
eter space, the inherent weaknesses of these models 
may lead to inaccurate results. Yet, relatively little work 
has been done in using Navier–Stokes solvers to study 
the fluid-structure interactions of ray-supported fins. 
Shoele and Zhu numerically examined the propulsive 
performance of skeleton supported pectoral fins [41] 
and insect wings [42] with a Navier–Stokes model. 
They concluded that the non-uniform stiffness dis-
tribution may significantly improve the performance, 
especially with a strengthened leading edge. However, 
their simulations are all 2D.

Bearing this in mind, in this paper we developed 
a fully coupled fluid-structure interaction model to 
examine the propulsive performance of a ray-sup-
ported caudal fin which is structurally similar to the 
caudal fin of a real fish. In this model, the fluid dynam-
ics around the caudal fin is simulated by solving the 
Navier–Stokes equations with a finite-volume method, 
while the fin rays are modeled as nonlinear Euler–Ber-
noulli beams. The rays are actuated by imposing a sway 
motion at the basal ends and the rest part of the rays 
is deformed passively under its own inertia, the elas-
tic effect, the hydrodynamic load and the constraint 
from the elastic membrane. It should be noted that in 
the present paper we use a ray-strengthened caudal fin 
to demonstrate the capability of our code; however, 
the code itself can be used in a wide range of applica-
tions. There are two purposes of the present work: 
first, to elucidate the effects of various spanwise defor-
mation patterns on the propulsion performance of a 
ray-strengthened caudal fin. A similar problem was 
numerically studied with a boundary-element method 
for the fluid dynamics [43], where the leading edge 
vortices and vortices shed from the dorsal and ventral 
edges as well as the viscous shear stresses were not con-
sidered. These effects may have substantial influence 
on the performance of the caudal fin. Second, it serves 

as the framework for future research involving various 
fin configurations as well as active controlling.

The present work will be the first systematic fully-
viscous fluid-structure investigation of a fin-like pro-
peller that captures a key morphologic characteristic 
of the ray fins of bony fish, the anisotropic distribu-
tion of bending stiffness imparted by the composite 
architecture with an underlying soft membrane with 
embedded rays. Compared with potential-flow-based 
simulations based on boundary-integral formations 
[43], this model includes not only viscous friction on 
the solid surface but also vorticity shedding from loca-
tions other than the trailing edge (e.g. the side edges), 
which is expected to affect the dynamics of the sys-
tem significantly. Moreover, the development of this 
fluid-structure interaction method will be a critical 
step towards more sophisticated modeling of fish fins 
including active shape change through individual ray 
control.

The rest of this paper is organized as follows: in 
section 2, the geometrical and structural properties 
as well as the kinematics of the idealized caudal fin 
are described. The parameters characterizing the pro-
pulsion performance are also defined in this section. 
In the next section, we introduce the governing equa-
tions and the numerical methods used in the present 
paper. In section 4, several validation cases and sensi-
tivity studies are demonstrated. The numerical results, 
including the forces, efficiencies and wake signature of 
caudal fins with various distributions of ray stiffness 
are presented in section 5. The conclusions are drawn 
in the final section.

2. Problem statement

In the present study, an idealized 3D fin (as shown 
in figure 1(a)) is numerically examined. The fin is 
modeled as a rectangular membrane supported by 
evenly distributed rays. The lengths in both x- and z-
directions are c, resulting in an aspect ratio of unity. The 
thickness is selected to be h  =  0.004c. Kinematically, 

Figure 1. (a) Illustration of the idealized caudal fin model; (b) stiffness of each ray (Ki) in various stiffness distributions.

Bioinspir. Biomim. 14 (2019) 036012
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the front end (i.e. the basal end) of each ray undergoes 
a sinusoidal sway motion in y-direction, which is 
depicted as y (t) = y0 cos (2πft), where y 0 is the sway 
amplitude and f  is the motion frequency. In the present 
simulations, we select y 0  =  0.5c and the Strouhal 

number is defined as St  =  2fy0
U∞

. It should be noted that 

this definition of the Strouhal number is different from 
the one based on the tip excursion. This is because the 
displacement of the trailing edge varies along the span 
so that it is difficult to specify a tip excursion.

The fin considered here has 11 evenly distributed 
rays (typical number in a real fish fin varies from 10 
to 20, [29]) with various bending stiffness. Each ray is 
structurally represented by a nonlinear beam with uni-

form Young’s modulus. The normalized bending stiff-

ness of the ith ray is defined as Ki =
EiI

ρU2
∞c3  (i  =  1,…,N), 

where N  =  11, Ei is the Young’s modulus of the ray and 
ρ is the fluid density. In this study, we assume that the 
bending stiffness of the membrane itself is negligi-
ble, i.e. the rigidity of the fin is solely determined by 
the stiffness of the rays. However, the membrane does 
provide constraints upon the ray’s motion, which are 
modeled as linear springs. Based on our numerical 
tests, the spring constant here is chosen to be 0.02ρU∞c, 
i.e. the springs are soft enough to allow large spanwise 
deformations, yet stiff enough to prevent too much 
expansion of the membrane. To reduplicate various fin 
deformations observed in previous experiments [30] 
and simulations [43], four different distributions of Ki, 
which correspond to four different deformation pat-
terns, are considered in the present work:

 (1)  Uniform distribution: Ki = Kb.
 (2)  Cupping distribution: Ki = KbQi/Q , where 

Qi = 1 + λ
î
1 − sin

Ä
π(i−1)

N−1

äó
.

 (3)  W-shape distribution:Ki = KbQi/Q, where 

Qi = 1 + λ
[

1 −
∣∣∣sin
Ä

2π(i−1)
N−1

ä∣∣∣
]
.

 (4)  Heterocercal distribution:Ki = KbQi/Q, 

where Qi = 1 + λ
î
1 − sin

Ä
π(i−1)
2(N−1)

äó
.

Here Kb is a constant and measures the mean stiff-
ness of all the rays and Q = 1

N

∑N
i=1 Qi. The parameter 

λ is selected to be 1, i.e. the stiffness of the least flexible 
ray is twice that of the most flexible one. Apart from 
the bending stiffness, another important parameter 
for this problem is the mass ratio, which is defined as 
m∗ ≡ ρsh/ρc, where h is the thickness of the fin. Here 
the mass ratio is selected to be m∗  =  0.2.

The propulsion performance of the fin is charac-
terized by the mean thrust coefficient CT , the mean 
power expenditure coefficient CP  and the propul-
sion efficiency η. Here CT  is calculated by averaging 
the instantaneous thrust coefficient CT (t) over one 
motion period T. The thrust coefficient is defined as

CT (t) =
−FX (t)

1/2ρU2
∞c2

, (1)

where FX (t) is the x-component of the instantaneous 
hydrodynamic force F(t).

Similarly, we have

CP (t) =
P (t)

1/2ρU3
∞c2

, (2)

where P(t) is the instantaneous power expenditure, 
which is evaluated as

P (t) =

¨

S
F (x, t) · Vg (x, t)dx, (3)

where Vg(x, t) is the moving velocity of the fin. 
The mean power expenditure coefficient CP is then 
calculated by averaging power coefficient CP (t) over one 
motion period. We assume that the energy transferred 
from the fluid to the caudal fin cannot be reused, thus 
the negative values of CP (t) are set to be zero. Therefore, 
the propulsion efficiency η is calculated as

η =
CT

CP
. (4)

It is worthy to point out that we are not exactly 
duplicating the real fish caudal fin geometrically 
and materially. Instead, we extract some key features 
(ray-strengthened, anisotropic flexibility and fluid-
structure interaction) possessed by real fish caudal fin, 
aiming at providing some useful guidelines for bio-
inspired robotic fin design. Additionally, the present 
work is definitely not a simple repeat of Zhu and Bi 
[43]. Instead, we use a more sophisticate flow solver 
which is physically more accurate (e.g. the capturing of 
vorticity shedding from the leading, dorsal, and ventral 
edges). The present work also paves the way for future 
research involving active control over the curvature 
and stiffness of the fin rays.

3. Mathematical formulations and 
numerical methods

The flow solver and its coupling with a modal analysis 
method have been extensively validated in our 
previous studies [44–47]. In our recent work, the flow 
solver is coupled with a nonlinear beam model [48]. 
We further developed a fully coupled fluid-structure 
interaction solver based on overset grids to simulate 
the aforementioned 3D ray-supported caudal fin 
model shown in figure 1(a). The present FSI code 
consists of five main modules: a finite-volume based 
CFD solver, a nonlinear beam model, an overset grid 
assembler (OGA), a mesh deformation algorithm and 
a fluid-structure coupling procedure.

3.1. The CFD solver
The fluid solver numerically solves the unsteady 
Navier–Stokes equations, which can be expressed in 
the integral form as

∂

∂t

˚

Ω

UdV +

¨

∂Ω

GdS = 0, (5)

Bioinspir. Biomim. 14 (2019) 036012
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where Ω is the control volume, ∂Ω is the boundary 
surface enclosing the volume, and S is the surface 
vector in outward direction. In equation (5), the 
conservative variable vector U is defined as

U = (ρ, ρv, ρE)T , (6)

where ρ  is the fluid density, v is the velocity vector in 
Cartesian coordinate system, and E is the total energy. 
The flux vector G (which consists of a convective term 
and a diffusive term) can be formulated as

G =




ρṽT

ρṽv + pI

(ρEṽ + pv)T


+




0

τ

(τ · v − q)T


 , (7)

where ṽ  is the relative velocity calculated as 
ṽ = v − vg , and vg the grid velocity. The shear stress τ  
and heat flux q in equation (7) are defined as

ταβ = µ
îÄ

∂vα
∂xβ

+
∂vβ
∂xα

ä
− 2

3 (∇ · v) δαβ
ó

q = −κ∇T
, (8)

where α,β ∈ (x, y, z), µ and κ are the dynamic 
viscosity and the thermal conductivity, respectively, 
and T is the temperature.

Based on an overset, multi-block structured grid 
system [49], the fluid governing equations are discre-
tized by a cell-centred finite volume method. For each 
hexahedral cell (i, j, k), we have the following semi-dis-
crete form:

∂

∂t

(
U i,j,k∆Ωi,j,k

)
− Ri,j,k − Di,j,k = 0, (9)

where Ri,j,k measures the convective and diffusive 
fluxes entering the hexahedral cell through its surface. 
Di,j,k denotes the artificial viscosity that is used to 
stabilize the scheme and eliminate the spurious 
numerical oscillations [50].

For unsteady simulations, the dual-time stepping 
algorithm [51] is employed for the temporal integra-
tion, where equation (9) is reformulated as a steady-
state problem with a pseudo-time ̃t :

∂

∂ t̃
Un+1 =

1

∆Ωn+1
R̃
(

Un+1
)

, (10)

where

R̃
(

Un+1
)
= R

(
Un+1

)
+ D

(
Un+1

)

− 3(U∆Ω)
n+1 − 4(U∆Ω)

n
+ (U∆Ω)

n−1

2∆t
.

 (11)

Equation (10) is then integrated by a hybrid multistage 
Runge–Kutta scheme. The flow solver is finally 
parallelized to reduce the computational time via 
message passing interface (MPI). More detailed 
formulations including the boundary conditions can 
be found in [52].

It is worth noting that the present CFD code solves 
the compressible Navier–Stokes equations without tur-
bulent models, i.e. the flow is assumed to be laminar. 
When the Reynolds number is relatively low (e.g. below 

103), turbulence may have insignificant effects on the 
flow field. For these scenarios, a laminar flow model is 
usually adopted to study some biomimetic problems, 
see examples in [32, 35, 36, 41]. To simulate incom-
pressible flows with a compressible flow solver, it is nec-
essary to ensure that the compressibility effect is negli-
gibly small. A flow can be considered as incompressible 
if the Mach number (defined as Ma  =  U/a, where U 
and a are the flow velocity and speed of sound, respec-
tively) is below the critical value of 0.3. In the current 
paper, we choose the freestream Mach number to be Ma, 

∞  =  0.06, which is far below the critical value but still 
sufficiently large for numerical stability. Considering 
the problems with moving boundaries, the actual Mach 
number experienced by the body can be larger than Ma, 

∞. To ensure the accuracy of the present flow solver, 
the local Mach numbers in the whole computational 
domain are monitored to guarantee that it is below the 
critical value. The present CFD code has been success-
fully applied to investigate various incompressible flow 
problems in our previous publications [44–48].

3.2. Nonlinear beam model
Structurally, the fin rays are modeled as nonlinear 
Euler–Bernoulli beams with uniform bending 
stiffness, whose dynamics is governed by [53]

ms
∂2x

∂t2
+ Kb

∂4x

∂s4

− Kh
∂

∂s

®ñ
1 −
Å
∂x

∂s
· ∂x

∂s

ã−1/2
ô
∂x

∂s

´
= Ff + Fe,

 (12)

where x is the instantaneous position of the ray, and 
s (0  <  s  <  c) is the Lagrangian coordinate. ms = ρsh 
is the mass per unit length, where ρs is the structural 
density and h is the thickness of the fin, Kb = Eh3/12 
and Kh = Eh represent the bending and stretching 
stiffness, respectively. Ff  denotes the fluid loads and 
Fe represents the external forces from connecting 
linear springs which model the constraints from the 
collagenous membrane. The hysteretic (or material) 
damping effect is considered by replacing the Young’s 
modulus E in Kb and Kh with E (1 + σ∂/∂t), where 
σ denotes the structural damping coefficient. In all 
present simulations, we select σ = 2c/U∞.

At the front end (s  =  0) of each ray, the boundary 
condition with prescribed motion is imposed, we have

x (0, t) = x (0, 0) + [0, y (t)]T

∂x(0,t)
∂s = [1, 0]T

. (13)

At the trailing end, we have the free boundary 
condition (zero-stress and zero-bending) which can 
be mathematically expressed as

Kb
∂3x
∂s3 − Kh

[
1 −

(
∂x
∂s ·

∂x
∂s

)−1/2
]

∂x
∂s = 0

∂2x
∂s2 = 0

. 
(14)

Equation (9), together with boundary conditions (10) 
and (11), are both spatially and temporally discretized 
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using a second-order finite difference method and 
the resulting linear system is solved with an iterative 
Gauss–Seidel approach [14, 53].

3.3. Overset grid assembler (OGA)
The present OGA is based on the implicit hole cutting 
(IHC) technique [54], which requires no explicit 
definition of the hole boundary. The IHC method is 
combined with the multi-block structured grid system 
by introducing the concept of ‘cluster’ [49]. A cluster is a 
grid composed of one or multiple blocks with matched 
boundaries between them. For example, figure 2(a) 
demonstrates the overset, multi-bock structured grid 
used for CFD simulations of the present caudal fin. 
This overset grid system consists of two clusters: one 
is the background grid (green colour), which provides 
a sufficient far-field boundary. Another cluster is the 
body-fitted grid around the body (red colour), which 
is denser than the background mesh and is mainly 
used to capture the fluid features near the body. In the 
present overset grid method, block boundaries are 
classified into three categories: the physical boundary, 
matching boundary and overlapping boundary. At the 
physical boundary, physical boundary conditions (e.g. 
inlet, outlet, no-slip etc) are applied. The matching 
boundary is the boundary where blocks are connected 
exactly in a point-to-point fashion. This boundary 
only exists between blocks in the same cluster and 
the fluid information is exchanged through two-layer 
of ghost cells around each block. The overlapping 
boundary is the non-physical outer boundary of one 
cluster, where the flow information is interpolated 
from the corresponding donors using a trilinear 
scheme. To ensure accurate data transfer between 
different clusters, the two layers of ghost cells are also 
included as fringe cells and join the grid connectivity.

The IHC method is intrinsically a process of select-
ing the optimal ‘donor’ for each ‘receiver’ based on the 
criterion of cell size. The donor cell for a receiver point 
in one cluster refers to the cell on another cluster con-
taining the receiver point, as illustrated in figure 2(b). 

For a given receiver point Q, a key task of the IHC 
approach is to find its optimal donor cell. The donor 
detection algorithm implemented in the present work 
consists of three basic steps: (1) Low-order inside/out-
side cell test. The test uses a quick cross and dot prod-
uct calculation to check if the testing point (receiver) 
is inside or outside a cell (potential donor). (2) High-
order inside/outside cell test. This test is triggered after 
a potential donor is identified using the low-order 
test, which requires the computational coordinate (ξ) 
of the testing point within this cell. (3) Cell size based 
donor selection. If multiple donor cells are found after 
previous two steps, the one with the smallest cell vol-
ume will be selected as the optimal donor cell.

The donor searching process (also known as 
hole-cutting process) is particularly time consum-
ing, thus special efforts are made in two aspects to 
reduce the cost. First, the overlapping boundary 
points are tested prior to interior points in order to 
eliminate unnecessary tests. During the searching 
for donor cells for the boundary points, the overlap-
ping relationship between different blocks will be 
determined. When testing the interior points, the 
IHC algorithm will skip those blocks that are non-
overlapping with the testing block, which tremen-
dously reduces the computational cost. Second, the 
starting cell for a donor search in a particular block 
is carefully selected to shorten the searching path. In 
most cases, the present and the previous test points 
are in close proximity, which indicates that the donor 
cells of the two test points are also very close to each 
other. By carefully choosing the starting cell, the 
search path can be considerably shortened [54]. The 
basic steps of the present overset grid algorithm are 
therefore designed as:

 (1)  Separating the complete geometry into 
different components.

 (2)  Generating a multi-block structured grid for 
each component, and assembling them into 
a single overset grid.

Figure 2. (a) The overset grid in the fluid domain. (b) Illustration of the receiver and donor in overset grid.
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 (3)  Testing the overlapping boundary points 
including the ghost-cell points and 
establishing the overlapping relationship 
between different blocks.

 (4)  Testing the interior points. Non-overlapping 
blocks are skipped in this process.

 (5)  Organizing and distributing the donor 
information to the other processors to 
facilitate the parallel computation.

After the aforementioned hole cutting procedure, 
all grid cells in the overset grid system are categorized 
into calculated cell and interpolated cell. If a cell fails to 
find the corresponding donor cell, it will be labelled as 
calculated cell; otherwise, it is known as interpolated 
cell. The fluid variables of the calculated cells will be 
updated normally while the values of these variables of 
the interpolated cells need to be obtained from their 
corresponding donor cells. Overset grids have great 
advantages in handling bodies with complex geome-
tries and multiple bodies with relative motion. Despite 
that only a single caudal fin model is used in the pre-
sent study, the use of overset grids enables the present 
work to be easily extended to problems involving fin-
fin and/or fin-body interactions.

3.4. Mesh deformation algorithm
Due to the use of overset grids, only grids associated 
with a flexible body need to be deformed. In the present 
work, the mesh deformation is determined using a 
fast and robust moving mesh algorithm [55]. This 
approach combines a spring-analogy method [56] and 
a trans-finite interpolation (TFI) method. Specifically, 
the corner points of a mesh block are assumed to be 
connected via linear springs, whose rigidity is inversely 
proportional to its length. Given the new positions of 
the corners on the deformed surface, the positions of 
the other corner points will be decided by solving the 
static equilibrium equations. After the positions of 
all corner points are calculated, the coordinates of the 
block inner points are interpolated via TFI method.

3.5. Fluid-structure coupling procedure
In the present code, the Navier–Stokes solver is coupled 
with the nonlinear beam model via a partitioned 
framework. In partitioned method, a strong coupling 
can be achieved by introducing subiterations within 
each time step [57, 58], which has second-order 
time accuracy and allows lager time step. However, 
with full subiterations, the computational cost can 
be substantially increased, which offsets the benefit 
of larger time step. Alternatively, a loosely coupled 
method referred as conventional serial staggered (CSS) 
procedure [59] can also be accomplished within the 
partitioned framework. This method requires only one 
data exchange between the fluid solver and structural 
solver in each time step so that it significantly reduces 
the computational expense. Despite the numerical 
stability issue associated with loosely coupled methods, 

this approach is still favoured due to its simplicity and 
efficiency. Since the caudal fin model is completely 3D 
and requires plenty of computational time, the loosely 
coupled CSS approach is used in the present work, as 
illustrated in figure 3(a).

Since the fluid and structural equations are solved 
independently, the structural grid does not necessar-
ily coincide with the body-fitted fluid grid (shown in 
figure 3(b)). Thus, interpolations of fluid forces and 
structural deformations must be performed between 
the two grid systems. Figure 3(c) shows the method 
used to transfer the fluid loads from the fluid grid to 
the structural grid. Both the fluid mesh vertices on 
the wet boundary of the body and the structural grid 
points are firstly projected to a common planar plane, 
on which a linear (bilinear for 2D case) interpolation 
is then performed. The structural displacements are 
transferred to the fluid mesh by a constant volume 
tetrahedron (CVT) method [60, 61]. As shown in fig-
ure 3(d), the tetrahedron is composed of three points 
in structural grid plus one point from fluid grid. When 
the structural points are moved to new positions, the 
fluid point is moved such that the volume of the tetra-
hedron remains unchanged.

4. Validations and self-consistency study

The present FSI solver based on multi-block grid has 
been validated and used to investigate the dynamics 
of a 3D caudal fin slice in our previous work [48]. In 
the current paper, an overset grid module is integrated 
into the FSI code, which extends the capability of the 
present code dealing with multiple flexible bodies. To 
further validate the present FSI solver with the overset 
grid function, we simulate three canonical problems 
and compare our results with those from theory 
or other literature. The first case is used to validate 
the present 3D flow solver, where the flow past a 3D 
plunging wing is simulated. To examine the accuracy 
of the structural model, the first and second order 
bending modes of a cantilever are produced by heaving 
the beam with very small amplitude at its first and 
second natural frequencies, respectively. The coupled 
FSI solver is then validated by predicting the dynamic 
response of a flexible cantilever immersed in the wake 
of a square cylinder. Additionally, a self-consistency 
study is also conducted to check the sensitivities of the 
present code to CFD mesh density and physical time 
step size.

4.1. Validation cases
We first simulate the flow past a 3D cylinder and 
compare the present results with those from the 
literature [62, 63]. The Reynolds number based on 
freestream velocity U∞ and diameter D is 300. Two 
different aspect ratios (L/D  =  6.28 and 10.24) are 
used, consistent with those in the literature. Figure 4 
illustrates the temporal evolutions of lift and drag 
coefficients and the iso-surfaces of normalized 
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Figure 3. (a) The CSS coupling procedure. (b) Illustration of the non-matching fluid-structure interface. (c) Projection-based 
interpolation method for fluid forces. (d) A CVT.

Figure 4. Time histories of drag and lift coefficients (a) and (b) and iso-surfaces of instantaneous normalized vorticity magnitude 
(c) and (d). (a) and (c) L/D  =  6.28, and (b), (d) L/D  =  10.24.
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vorticity magnitude at these two aspect ratios. It can 
be seen that for both cases, the time histories of force 
coefficients show a modulated behavior. A similar 
phenomenon is observed in [63]. We can also observe 
from figures 4(c) and (d) that the vortex shedding 
behind the 3D cylinder is completely 3D. The mean 
value of drag coefficient and the root-mean-square 
(r.m.s.) value of lift coefficient from the present 
simulation and the literature are summarized in 
table 1. It can be seen that the present results agree well 
with the published data.

To examine the accuracy of the present structural 
solver, we numerically reproduce the first and second 
order bending modes of a cantilever by imposing a 
heave motion with small amplitude at the leading 
edge of the beam. The parameters are chosen as fol-
lows: length l  =  0.1 m, thickness h  =  0.001 m, density 
ρs  =  10 kg m−3, Young’s modulus E  =  100 GPa, and 
heave amplitude a0  =  0.5h. The natural frequencies of 
a cantilever can be calculated as

ωi =

Å
βi

l

ã2
 

EI

ρsS
(i = 1, 2, · · · ) , (15)

where I is second moment of inertia, S is the cross-
section area, and, βi  =  1.875 and 4.694 for the first and 
second order natural frequencies, respectively. The 
modal functions are expressed as

φi (x) = cos (βix)− ch (βix) + ζi [sin (βix)

−sh (βix)] (i = 1, 2, · · · ) ,
 (16)

where

ζi = −cos (βil) + ch (βil)

sin (βil) + sh (βil)
(i = 1, 2, · · · ) . (17)

The first two bending mode shapes are shown in 
figure 5. It can be observed that the calculated and 
theoretical results agree perfectly well with each other.

Finally, we numerically predict the dynamics of a 
thin elastic cantilever placed in the wake of a station-
ary rigid square cylinder (as shown in figure 6(a)) in 
order to validate the coupled algorithm. This case has 
been widely used as validation benchmark for fluid-
structure interaction solvers [58, 64–66]. When the 
Reynolds number is higher than a critical value, the 
flow separates from the leading corners of cylinder at 
a constant frequency. The oscillating flow results in 
the oscillation of lifting force, which excites the flex-
ible cantilever attached behind it to vibrate accord-
ingly. The dimensionless parameters for the fluid and 

structure are as follows: The structure to fluid mass 
ratio m∗  =  1.27, the bending stiffness of the cantile-
ver Kb  =  0.226 and the Reynolds number based on the 
diameter of the square cylinder is 332. The overset grid 
used for fluid dynamics simulation is shown in fig-
ure 6(b), where independent clusters are generated for 
the square body and the cantilever.

The time history of the dimensionless cantilever 
tip displacement is demonstrated in figure 6(c), from 
which we can see that the vibration of the cantilever 
becomes periodic after a transient region. Figure 6(d) 
shows vorticity contours when the beam reaches the 
extreme positions. It is observed that flow separates 
at the leading corners and a clockwise vortex forms 
at the upper region while its counterpart forms at the 
lower region. These vortices travel along the vibrat-
ing cantilever and dissipate into the wake. The vorti-
ces at the trailing edge shed into the wake forming the 
famous Von Karman vortex street. The quantitative 
reduced frequency ( fr = πfD/U∞) and the dimen-
sionless maximal tip displacement (d∗

max ) are sum-
marized in table 2 along with other available data. 
Obviously, present results agree well with others from 
the literature though the reduced frequency in the 
present simulation is slightly higher than the results 
from referred literatures [58, 64–66]. The maximal 
tip displacement obtained here d∗

max   =  1.12 is close 
to those using different FSI solvers, which ranges 
from 1.02 to 1.25.

4.2. Self-consistency study
In order to check the dependency of the current 
numerical results on the CFD mesh density and 
physical time step size, simulations are carried out for 
cupping stiffness distribution at Kb  =  1.0 and St  =  0.4. 
Since the near fluid field around the caudal fin has 
more significant effect on the fin’s performance, only 
the mesh density of Cluster 2 (see figure 2) is varied 
in mesh dependency test and the background mesh 
(Cluster 1) remains unchanged. The computational 
domain of the body-fitted cluster is essentially a box. 
The mesh density is changed via adjusting the number 
of grid point along three directions. A fine mesh 
(MESH_F) is generated with 201  ×  161  ×  81 grid 
points in x-, y-, and z-direction, respectively. Similarly, 
a medium mesh (MESH_M) and a coarse mesh 
(MESH_C) are generated with 161  ×  141  ×  61 grid 
points and 121  ×  121  ×  41 grid points, respectively. 
Figure 7(a) shows the instantaneous thrust coefficient 
within one motion period using different body-
fitted meshes. It is observed that the thrust produced 
by the three meshes perfectly agree with each other, 
indicating that MESH_M is sufficient to simulate the 
3D caudal fin case. With MESH_M, we then examine 
the sensitivity of the present CFD code to the physical 
time step size using three different time steps. The 
results are illustrated in figure 7(b), from which we 
find that dt  =  T/200 is sufficient to simulate the flow 
field around the caudal fin. Therefore, in the following 

Table 1. Mean drag and r.m.s. lift coefficients for flow past a 
stationary 3D cylinder at Re  =  300. Numerical data from the 
literature is provided for comparison.

L/D Cd,mean Cl,rms

Present 6.28 1.217 0.463

Present 10.24 1.234 0.466

Rajani et al [62] 6.28 1.284 0.525

Constant et al [63] 10.24 1.430 0.453
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simulations, we use MESH_M and dt  =  T/200 to 
investigate the proposed problem.

5. Results

The 3D caudal fin problem depicted in figure 1 is solved 
using the aforementioned fluid-structure interaction 
solver in section 3. Figure 8 shows the computational 
domain for fluid dynamics. The origin is located at the 
leading edge of Ray 1 and the flow direction is along 

the x-axis. On the fin surface, we apply the no-slip 
boundary condition; while for the other boundaries, 
the non-reflective far-field boundary condition is 
imposed. The Reynolds number, which governs the 

fluid behavior, is defined as Re = ρU∞c
µ , where μ is the 

fluid dynamic viscosity, and in the present simulations 
we choose Re  =  1000.

Figure 9 demonstrates the fin deformations within 
one motion period for various stiffness distributions. 
From the top views, we can see that the deformation 

Figure 6. (a) Computational domain and boundary conditions for the elastic cantilever. (b) The CFD grid for the flexible cantilever 
system. (c) The time history of the cantilever tip displacement. (d) Instantaneous flow vorticity of the oscillating elastic cantilever at 
typical positions.

Figure 5. First and second order bending modes of a cantilever from the present simulation and theory.
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patterns from different stiffness distributions are 
quite similar to each other, with the bending of all the 
fin rays dominated by the lowest mode. However, for 
the deformation patterns viewed from behind, dif-
ferent stiffness distributions demonstrate distinctive 
features. Despite the fact that all the rays are identical, 
the fin with uniform stiffness distribution also displays 
spanwise deformation (figure 9(b)), which resembles 
a cupping deformation. This can be attributed to the 
non-uniformly distributed fluid forces along the span 
of the fin due to the finite aspect ratio and the vorti-
ces rolling up at the dorsal and ventral edges (Ray 11 
and Ray 1, respectively). For the cupping distribution 
of the ray stiffness (figure 9(d)), the rays at the dorsal 
and ventral edges lead the sway motion while the ray 
in the middle (Ray 6) falls behind. This is because the 
ray in the middle is softer than those at the upper and 
lower edges, and the hydrodynamic loading on the 

central part of the fin is larger than elsewhere. With the 
W-shape stiffness distribution, the fin deformations 
become more complicated, where multiple curvature 
reversals are generated. The heterocercal stiffness dis-
tribution generates asymmetrical deformation pat-
terns, which distinguishes itself from the other stiff-
ness distributions, where the deformations obtained 
are symmetrical with respect to the center line (Ray 6). 
It should be noted that the fin deformation patterns 
in the present paper are achieved solely by passive ray 
deflections. In the experiments of Esposito et al [30], 
the fin deformations were modulated by changing the 
phases and excursions of the fin rays, which are intrin-
sically different from the approach we use here.

Figure 10 shows the mean thrust coefficient CT , the 
mean power expenditure coefficient CP  and the pro-
pulsion efficiency η as functions of the mean bend-
ing stiffness of the rays for different distributions at 

Figure 7. Sensitivity study of the present code to (a) mesh density, (b) physical time step. Cupping distribution, KB  =  1.0, St  =  0.4.

Figure 8. Sketch of the computational domain for 3D caudal fin simulation.
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St  =  0.4. The rigid ray case is also included for com-
parison. From these figures, we can see that the rigid 
fin cannot generate any net thrust at this Strouhal 
number, as the longitudinal force is mostly provided 
by shear stresses due to the lack of effective pitching 
motion. This is different from the result of Zhu and Bi 
[43], where finite thrust was generated by a rigid cau-
dal fin. The difference is attributed to the fact that the 
fin used in our study is much thinner than the one used 
by Zhu and Bi (0.004c versus 0.02c) so that the comp-
onent of the pressure force in the forward direction 
is significantly reduced. Moreover, the current model 
includes viscous friction on the fin surface, which fur-
ther diminishes the thrust. Within the range of bend-
ing stiffness considered here, all flexible fins have 
improved propulsion performance with increased 
thrust and efficiency. For all types of stiffness distri-
butions, the mean thrust coefficient CT  experiences 
a significant increase and then a sharp decline with 
the increase of the flexibility, with the peak CT  values 
achieved at an optimal flexibility of Kb  =  1.0 [11]. A 
similar trend is seen in the propulsion efficiency, where 

the peaks are achieved at smaller Kb values, which vary 
with specific stiffness distribution profiles. Interest-
ingly, a slight increase of the power expenditure CP  
is witnessed at stiffer rays for all types of stiffness dis-
tributions. But due to the fact that CT is increased at a 
larger magnitude, the efficiency still rises. As the bend-
ing stiffness becomes smaller than the optimal value, 
both the thrust coefficient CT and the power expendi-
ture coefficient CP  begin to fall, but CP  drops with a 
larger rate, resulting in an increase of the propulsion 
efficiency. As the mean stiffness Kb further decreases, 
CT  decreases faster than CP, which causes a significant 
decline in efficiency.

A closer inspection of figure 10 reveals that when 
the mean bending stiffness Kb is larger than the opti-
mal flexibility value, the differences between various 
stiffness distributions are marginal. The thrust forces 
generated by cupping and W-shape distributions 
are only slightly higher than those from uniform and 
heterocercal distributions. However, the differences 
become more pronounced when the fins are more 
flexible, which is consistent with previous simulations 

Figure 9. Typical fin deformations for different ray stiffness distributions viewed from the top (left column) and behind (right 
column); (a) and (b) uniform distribution; (c) and (d) cupping distribution; (e) and (f) W-shape distribution; (g) and (h) 
heterocercal distribution.
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Figure 10. Mean thrust coefficient CT , mean power expenditure coefficient CP  and propulsion efficiency η as functions of the mean 
bending stiffness Kb for different fin deformations at St  =  0.4.

Figure 11. Mean thrust coefficient CT , mean power expenditure coefficient CP  and propulsion efficiency η as functions of the mean 
bending stiffness Kb for different fin deformations at St  =  0.3.
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[43] while contradictory with the experimental study 
[30], where they concluded that with more compliant 
fin rays, the forces generated by the robotic caudal fin 
are less varied. However, we note that there exists fun-
damental difference in terms of the mechanism used 
to actuate the rays and create various deformation pat-
terns between the present work and the experiment. In 
our cases, all fin rays undergo the same sway motion at 
the basal ends and the various deformations are accom-
plished passively. On contrary, in the experiment, the 
robotic rays were activated individually, and various fin 
shapes were created by varying the phase lags between 
different rays. Generally, more flexible fin rays are more 
compliant to surrounding flows. For the present simu-
lations, compliance enlarges the differences between 
the deflections of fin rays, thus magnifying the effect of 
various stiffness distributions. In the experiment, the 
compliance of the robotic fin rays mitigates the effects 

of phase lags between them and reduces the differences 
between various deformation patterns.

As aforementioned, in the present study, softer 
caudal fins have more distinctive deformation patterns 
under different bending stiffness distributions. There-
fore, the differences in thrust generation and efficiency 
between various stiffness distributions are more pro-
nounced for fins with more flexibility, which can be 
observed in figure 10. Specifically, for very soft caudal 
fins, the uniform distribution creates the largest thrust 
and highest propulsion efficiency, whereas the cup-
ping distribution generates the least thrust and low-
est efficiency. But cupping distribution has the lowest 
power expenditure coefficient. The W-shape and the 
heterocercal distributions only have mediocre perfor-
mance. Figure 11 shows the same plots as figure 10 at 
a smaller Strouhal number (St  =  0.3), from which we 
can draw the same conclusions.

Figure 12. Time histories of the instantaneous thrust coefficient CT, lateral force coefficient CY and power expenditure coefficient CP 
over one motion period for a rigid fin and a flexible fin (cupping distribution, Kb  =  0.5) at St  =  0.4.
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Figure 13. Normalized displacements of leading edge y L/c (red dash line), trailing edge y T/c (blue dash-dot line) and effective pitch 
motion (y T  −  y L)/c (green dash-dot-dot line) of Ray 6, and thrust coefficient CT (pink solid line) in cupping distribution at St  =  0.4; 
(a) Kb  =  1.0, and (b) Kb  =  0.3.

Figure 14. Deflections in y -direction of Ray 1 (blue solid lines) and Ray 6 (red dash-dot lines) for (a) uniform distribution and (b) 
cupping distribution, St  =  0.4, Kb  =  0.5.
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The present conclusion that the fin with uniform 
stiffness distribution has the best overall performance 
in terms of thrust generation and efficiency seems to 
be different from those in previous experimental [30] 
and numerical [43] studies. For example, Esposito et al 
[30] found that the cupping motion produced more 
thrust than the other motions (flat, W, undulation and 
rolling). However, as previously mentioned, the mech-
anism to actuate the fin rays in the numerical studies 
is different from the one in experiments. Besides, we 
should note that the uniform distribution in the pre-
sent work does not correspond to the flat motion in the 
experiment. In the present paper, the uniform stiffness 
distribution eventually results in cupping deforma-
tion patterns due to the non-uniform distribution of 
the fluid loads along the fin span, which will be shown 
later. This cupping effect is more pronounced in softer 
rays. From this perspective, our conclusion is actu-
ally consistent with the experiment. Zhu and Bi [43] 
numerically examined a similar problem, where they 

concluded that the ‘W’-shape distribution performed 
the best, which is also different from the present simu-
lation. The difference is likely to be attributed to the 
methods used to resolve the surrounding flows: an 
inviscid flow model was used by Zhu and Bi, which 
neglected the viscous effect and vortices shed from the 
leading edge and the dorsal and ventral edges. These 
vortices are believed to significantly affect the pressure 
distribution across the fin surface, thereby affecting the 
performance [67].

The instantaneous thrust coefficient, lateral force 
coefficient and power expenditure coefficient within 
one flapping period for both rigid and flexible fins are 
shown in figure 12. The most pronounced effect of 
the structural flexibility is the significant increase in 
the peak value of CT. This is attributed to larger flap-
ping amplitude and effective pitching angle due to the 
structural deformation, which will be discussed later. 
Another effect of flexibility is the reduction in lateral 
force CY. This can be explained by the fact that flexibil-

Figure 15. Iso-surfaces of vorticity magnitude in the wake behind a fin with different stiffness distributions; (a) uniform 
distribution, (b) cupping distribution, (c) w-shape distribution, and (d) heterocercal distribution. St  =  0.4, Kb  =  0.5, t  =  T/4.
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ity can significantly reduce the work done to the sur-
rounding fluid so that less energy is needed to activate 
the caudal fin.

The lateral deflection of the caudal fin rays essen-
tially creates a pitch motion, which can be expressed 
as (y T  −  y L)/c, where y T and y L are the lateral displace-
ment of the ray’s trailing edge and leading edge, respec-
tively. Figure 13 demonstrates the lateral deflections of 
the leading edge, trailing edge and pitch motion of Ray 
6, together with the thrust coefficient CT in cupping 
distribution at two different values of Kb. The ampl-
itude of the ray’s trailing edge is larger than that of the 
leading edge due to the lateral deflection, which leads 
to a stronger wake and thereby enhancing the thrust 
generation. Another factor contributing to higher 
thrust is the creation of a pitch motion, which redirects 
the fluid forces acting on the fin surface and generates 
larger component in forward direction. Comparing 
the pitch motion curve (green dash-dot-dot line) with 
the CT curve (pink solid line), we can observe that the 
peak value of the thrust is accomplished at the largest 
relative displacement (corresponding to the largest 
pitch angle). A closer observation and comparison of 
figures 13(a) and (b) reveal that the thrust genera-
tion is also greatly affected by the phase lag between 
the lateral motion and the pitch motion. For example, 
at Kb  =  1.0, where the largest mean thrust coefficient 
is achieved (see figure 10), the phase lag between the 
lateral motion and the pitch motion is approximately 
76 degrees while the phase lag at Kb  =  0.3, where 
the lowest thrust is generated, is found to be around 
105 degrees, which is considered out of the optimal 
range [28]. We note that the phase lag maximizing 
the thrust generation in our study deviates from the  

optimal value obtained experimentally by Park et al 
[28]. This may be attributed that the mechanical cau-
dal fins used by Park et al have uniform material prop-
erties; whilst in the present study, the bending stiffness 
is varied along the span, leading to more complicated 
deformation patterns. Another reason may be the 
effect of mass ratio. To enhance numerical stability, 
the mass ratio is chosen to be 0.2 in the present simula-
tions, whereas the mass ratio used in the experiment of 
Park et al is below 0.03.

The actual lateral deflections of Ray 1 and Ray 6 
for two different stiffness distributions within one 
flapping period are shown in figure 14. Overall, the 
deformation patterns from uniform and cupping dis-
tributions are similar to each other, indicating that the 
uniform distribution actually leads to a cupping defor-
mation. However, for the cupping distribution, Ray 
6 deforms much more significantly due to the lower 
bending stiffness while Ray 1 has smaller lateral deflec-
tion, which creates a higher phase lag between the two 
rays.

The wake behind the flexible caudal fin is demon-
strated in figure 15. As we can see that for all stiffness 
distributions, the wake is composed of a sequence of 
vortex-rings that are comparable with the caudal fin in 
size. For the symmetrical deformations with respect to 
the center line (uniform, cupping and W-shape), the 
vortex rings behind the fin are also symmetrical and 
resemble each other. Only subtle difference at the con-
nection between neighboring rings can be observed. 
However, for the asymmetrical deformation (heter-
ocercal), it is evident that the vortex-rings are tilted 
upward compared with those from symmetrical defor-
mations. The force component in vertical direction 

Figure 16. Vorticity fields behind the flexible fin with (a) uniform, (b) cupping, (c) W-shape and (d) heterocercal ray stiffness 
distributions. The contours display the y -component of the vorticity within y   =  0 plane. St  =  0.4, Kb  =  0.5, t  =  T/4.
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is thus significantly increased, which can be used for 
maneuvering and stabilizing. A sectional view of the 
wake behind the caudal fin is shown in figure 16. With 
symmetrical stiffness distributions, the fin produces a 
pair of tip vortices from the trailing edges of the dorsal 
(Ray 11) and ventral (Ray 1) rays. These vortices are 
countering-rotating and have approximately equal 
strength. For the fin with heterocercal stiffness distri-
bution, there are also two counter-rotating tip vorti-
ces (with different strength) shed from the ray trailing 
edges.

6. Discussions and conclusions

With active and passive control over the bony rays 
embedded in the collagenous membrane, ray-finned 
fish are able to modulate their caudal fin shapes to 
obtain desired forces in different directions. This 
unique composite architecture of the caudal fin has 
three main features: (1) anisotropic flexibility over the 
fin; (2) individual activation of the rays; (3) control on 
the ray’s curvature and stiffness. These features enable 
the fish to have multi-degree-of-freedom control 
over their caudal fins, and also provide a source of 
inspiration for the design of bio-inspired underwater 
robotics. However, the complicated structure of fish 
fin poses great challenges for computational modeling. 
With a few exceptions, most numerical studies idealize 
fish caudal fins as either rigid or elastic panels with 
uniform flexibility. These oversimplified models are 
believed to produce inaccurate conclusions.

In this paper, we develop a fully coupled fluid-
structure interaction model that can be used to study 
skeleton-strengthened fish fins. In this model, the fluid 
dynamics is resolved by an in-house CFD code, where 
the unsteady Navier–Stokes equations are solved by 
a finite-volume method based on an overset, multi-
block structured grid system. The embedded rays are 
represented by nonlinear Euler–Bernoulli beams. The 
membranes connecting different rays are assumed to 
be unable to hold any bending, thus their constraints 
on the rays are modeled as linear springs.

To demonstrate the capability of the present model 
and elucidate the effects of various spanwise deforma-
tion patterns on the propulsion performance of fish 
fins, we numerically examine a 3D ray-supported 
caudal fin. With four spanwise stiffness distributions 
(uniform, cupping, W-shape and heterocercal), cer-

tain deformation patterns observed in experiments 
can be reproduced. For all stiffness distributions, the 
performance of the caudal fin is enhanced over a wide 
range of flexibility. Both the thrust and the efficiency 
experience an increase and then a decrease as the flex-
ibility rises, indicating the existence of an optimal 
flexibility. The differences between various stiffness 
distributions are more pronounced in softer rays. 
Among these stiffness distributions, uniform distri-
bution is found to have the best overall performance 
in terms of thrust generation and efficiency, while 
the cupping distribution requires the least power 
expenditure. This conclusion seems to contradict 
previous experimental study [30]. By analyzing the 
actual deformations, however, it is found that with a 
uniform bending stiffness distribution, the caudal 
fin produces a ‘cupping’ deformation as well due to 
the non-uniformly distributed fluid loads across the 
fin surface. Subsequently, both uniform and cupping 
stiffness distributions lead to cupping deformation 
patterns. But the cupping distribution is more likely 
to be ‘over-cupped’ (i.e. the passive ray deformations 
are out of phase with the swaying motions), which 
explains why the thrust generated by the cupping dis-
tribution drops much more significantly than that by 
the uniform distribution.

The current model is concentrated on illustrating 
the effect of ray stiffness distribution on the hydrody-
namic performance of fish-like fins with passive defor-
mation, whereas some details of actual fish fins (e.g. 
the geometry) are not considered. For example, for 
simplicity in this model the rays are assumed to have 
the same length. This, together with the inclusion of 
viscous effect and more sophisticated vorticity shed-
ding model, may explain the differences in the current 
results and those in the previous study [43]. The fins 
of live fish, on the other hand, rely on both passive and 
active control for fin shape variation. It is thus difficult 
to directly relate predictions from the current model 
with dynamics of actual fish fins.

The present study suggests that by appropriately 
cupping their fins, fish are able to save energy and gen-
erate more desired forces when moving against incom-
ing surrounding fluids. This conclusion is consistent 
with previous observations [24, 26, 30]. On the other 
hand, unlike the fully passive fin dynamics depicted in 
our model, fish can actively control the curvature and 
flexibility of their fins, which is expected to further 
enhance the locomotion performance. These effects 

will be examined in future studies.
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