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1. Introduction

Fish have evolved excellent propulsive and 
manoeuvring abilities that have allowed them to adapt 
to the aquatic environment and survive the natural 
selection process. For humans, the physical and 
biological mechanisms observed in swimming fish are 
a precious source of inspiration for the development 
of artificial swimming machines such as autonomous 
underwater vehicles [1, 2].

Generally, there are two effective ways to study 
fish swimming mechanisms, namely through exper
imental study and simulation. These methods are well 
summarised in several comprehensive review papers 
[3–7]. The experimental approach observes and meas
ures the locomotion of live or robotic fish, and provides 
the most reliable data for analysis and direct evaluation 
of the robots [8–13]. Benefitting from newly developed 
measuring techniques, the experimental approach can 
directly record fluid motion via PIV measurement 
[14, 15]. However, some other key physical param
eters which are beyond the capability of experimental 
records remain unresolved (such as the surface stress 
of a swimming fish). While an experimental approach 
can deal with the morphological, behavioural and 

environmental complexities in nature, these complex
ities sometimes hinder researches’ ability to arrive at 
mathematical principles.

To compensate for these experimental tests, 
computational approaches have been adopted. The 
approaches can be divided into analytical models and 
computational fluid dynamics (CFD) models. The 
analytical model reduces the complexity of live fish 
swimming during the modelling process, consider
ing that a swimming fish is in quasisteady state. As 
such, this method concentrates on the primary fluid 
dynamic characteristics while neglecting secondary 
effects (e.g. Lighthill’s Elongated Body Theory simpli
fies the fish body as a curve and assumes a completely 
inertial flow condition [16]). This results in elegant 
mathematical expressions which can be solved with
out computers. Therefore, such simplifying assump
tions in the analytical model enable us to expediently 
analyse the essence of swimming, albeit at a consider
able sacrifice of applicable range and accuracy. Par
ticularly, as the unsteady mechanism is found to cause 
considerable extra hydrodynamic force, this is beyond 
the capability of any analytical model (e.g. [17]).

Uptodate CFD models can complement the 
role of experimental and analytical models but are 

R Li et al

056001

BBIICI

© 2018 IOP Publishing Ltd

13

Bioinspir. Biomim.

BB

1748-3190

10.1088/1748-3190/aacd60

5

1

17

Bioinspiration & Biomimetics

IOP

3

July

2018

A multi-body dynamics based numerical modelling tool for solving 
aquatic biomimetic problems

Ruoxin Li1 , Qing Xiao1, Yuanchuan Liu1, Jianxin Hu2, Lijun Li3, Gen Li4, Hao Liu3,4 , Kainan Hu5  
and Li Wen5

1 Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, Glasgow, United Kingdom
2 Faculty of Mechanical Engineering and Automation, Zhejiang SciTech University, Hangzhou, People’s Republic of China
3 Shanghai Jiao Tong University and Chiba University International Cooperative Research Centre (SJTUCU ICRC), Shanghai Jiao Tong 

University, Shanghai, People’s Republic of China
4 Graduate School of Engineering, Chiba University, Chiba, Japan
5 School of Mechanical Engineering and Automation, Beihang University, Beijing, People’s Republic of China

E-mail: qing.xiao@strath.ac.uk

Keywords: multibody system, selfpropulsion, unsteady locomotion, computational fluid dynamics, biomimetics

Abstract
In this paper, a versatile multibody dynamic algorithm is developed to integrate an incompressible 
fluid flow with a bioinspired multibody dynamic system. Of particular interest to the biomimetic 
application, the algorithm is developed via four properly selected benchmark verifications. The 
present tool has shown its powerful capability for solving a variety of biomechanics fish swimming 
problems, including selfpropelled multiple degrees of freedom with a rigid undulatory body, 
multiple deformable fins and an integrated system with both undulatory fish body and flexible fins. 
The established tool has paved the way for future investigation on more complex bioinspired robots 
and live fish, for either propulsion or manoeuvring purposes.

PAPER
2018

RECEIVED  
24 January 2018

REVISED  

21 May 2018

ACCEPTED FOR PUBLICATION  

19 June 2018

PUBLISHED  
3 July 2018

https://doi.org/10.1088/17483190/aacd60Bioinspir. Biomim. 13 (2018) 056001

publisher-id
doi
https://orcid.org/0000-0003-3313-6652
https://orcid.org/0000-0002-8687-3237
https://orcid.org/0000-0002-1498-3103
mailto:qing.xiao@strath.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/1748-3190/aacd60&domain=pdf&date_stamp=2018-07-03
https://doi.org/10.1088/1748-3190/aacd60


2

R Li et al

also capable of executing independent missions. In 
all research and engineering areas concerning fluid 
dynamics, CFD model predictions have been validated 
against experimental observations to demonstrate 
their accuracy.

Distinct from a traditional CFD arrangement via 
fixing a swimming object in an incoming flow condi
tion (equivalent to a watertunnel experiment, com
monly used in some commercial CFD software), 
present fish CFD simulations tend to allow the fish 
propelling themselves through water (freeswimming) 
[18–20]. While the selfpropelling (freeswimming) 
arrangement requires additional coupling of hydro
dynamics and bodydynamics, this method has several 
significant advantages. For example, the swimming 
speed is no longer treated as a known input before
hand, and thus the predicted CFD results are able to 
explore the kinematic and morphological parameter 
map beyond experimental observation (e.g. [17]). In 
addition, the CFD studies do not need to be limited to 
any stable forward motion, instead it can be expanded 
to various unstable or manoeuvre situations (e.g.  
[21, 22]).

Apart from the abovementioned advantages, the 
complexity of the CFD objectives in this study have 
been significantly improved. Traditionally, with the 
increase of complexity, the studies on fish swimming 
can be classified into three major groups: (a) fish body 
undulation without considering the influence of fins; 
(b) single fin, such as caudal fin or multiple fins ignor
ing the fish body; and (c) a combined fish body with 
multiple fins. A brief review of the studies in the rel
evant areas are given in the following section.

For the first category, typical modes such as anguil
liform and carangiform are introduced [5]. The 
anguilliform swimmer, such as the eel, bends its body 
into a wave shape, with the wave propagating from the 
fish head to the tail. To analyse this problem, a fish body 
can be modelled either through a continuous body or a 
multibody system with several discrete elements con
nected via joints. Typical examples include the work 
from Kern and Koumoutsakos [18], Carling et al [19] 
and Eldredge [23]. The carangiform mode fish, unlike 
the anguilliform mode, undulates the last third por
tion of their body along with a caudal fin. The relevant 
studies can be found from the papers of Maertens et al 
[24], Ogata et al [25] and Curatolo and Teresi [26].

In contrast to the first category focusing on a fish 
body, some numerical investigations concentrated 
on the performance of a single fish fin or of a fin–fin 
interaction (single fin: [27, 28]; passively deformable 
fin: [29]; rayed fin: [30, 31]; and fin–fin interaction: 
[32, 33]).

Apart from the above two groups, other research
ers investigated a combined model for a fish with lat
eral (paired fins such as pectoral fins) or median fins 
(unpaired fins such as dorsal, anal and caudal fins). 
Borazjani [34] examined the function of median  
fins during Cstart by reconstructing the model with/

without fins using an Immersed Boundary Method. 
Their results concluded that the anal and dorsal fins 
played a more significant role in the stability of the fish 
during Cstart mode than in producing hydrodynamic 
propulsion force. However, although the fins moved 
with the body of fish, their individual undulation was 
not considered in this study. Similarly, using an IBM 
method, Han et al [35] investigated the dorsal and anal 
fins of a sunfish model during a cruising condition. It 
was found that with dorsal, anal and caudal fins, the 
fish has a greater efficiency compared to other condi
tions with only two fins. The deformation of fins was 
imposed by prescribing the kinematic motion, and a 
constant incoming velocity was given rather than as 
a result of fluidstructure interaction modelling. Xu 
and Wan [36] numerically simulated a selfpropelled 
fish swimming with a pair of rigid pectoral fins using 
a multiblock and overset grid method. The row
ing, feathering and flapping motions of the fins were 
investigated. Numerical results showed that during the 
turning motion, both hydrodynamic moment and lat
eral force were generated by the fins. The deformation 
of the pectoral fins was not included in this work.

It is noted from the above studies that numerical 
simulations on biomimetic selfpropelled fish with 
multiple deformable fins are still in their infancy and 
thus require further development. In this study, we aim 
to develop a mature and effective numerical model
ling tool which can simulate a selfpropelled fish com
bining its multiple rigid/deformable fins. To achieve 
a comprehensive analysis, a multibody dynamics 
(MBD) theorybased algorithm is introduced. Accord
ing to the definition given by Khalil and Dombre 
[37], a general model in the present algorithm can be 
referred to as a treelike/structured model in contrast 
to a seriallike/structured model. For both tree and 
seriallike models, they are composed of n elements 
and n  −  1 hinges as given in figure 1. A reference body 
B0 is selected and used as a starting element for both 
models. The primary difference between the two mod
els is that, in a seriallike model, the nth element is the 
terminal body, whereas, a treelike model has more 
than one terminal body. As demonstrated in figure 1, 
several branches exist in a treelike model and each 
branch can be treated as a seriallike model.

The present study succeeds and improves on the 
research of Hu [38, 39], whereby a seriallike MBD 
solver, based on a hybrid mobile multibody algorithm 
[40–42] is combined with a CFD tool to investigate a 
simplified 2D selfpropelled fish. Hu’s method can 
mimic a swimming body as a series of discrete ele
ments in a sequence with a motion actuating mech
anism that can be either passive or active. However, 
because of the nature of a series arrangement, the fish 
fin is unable to be included. In addition, Hu’s model 
can only deal with a rigid element, which restricts each 
element in the system to follow a uniform undulat
ing locomotion. In the present study, the algorithm is  
further developed and upgraded to handle treelike 
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structures, such as a fish body with multiple fins. Thus, 
it can be widely applied to various fish swimming 
problems, such as the undulating locomotion of a fish 
body with single and multiple fins. In addition, the ele
ments in the updated MBD model can be regarded as 
either rigid or deformable, which makes the numerical 
modelling of deformable fins possible.

To describe this new model and validate its capabil
ity, the remainder of the paper is structured as follows. 
Section 2 will introduce in detail the treelike MBD 
algorithm, the fluid solver and the coupling between 
the two. Section 3 will present four canonical examples 
to illustrate the application of our developed numer
ical tool, including the comparison with some avail
able experimental and CFD results. This will cover a 
discrete eellike model, a continuous eellike body, a 
pedunclecaudalfin and a selfpropelled fish swim
ming induced by its multiple fin undulation.

2. Numerical methods

In this section, detailed description on the established 
numerical methodology will be introduced. The fluid 
flow around fish and fins is solved using Commercial 
software ANSYS Fluent 15.0. To cope with the complex 
body and multiple rigid and/or deformable fins 
locomotion, as explained fully in section 2.1, dynamics 
of the model are solved using multibody treelike 
algorithms. This part is developed with an inhouse 
code and embedded into user defined function (UDF) 
of ANSYS Fluent. At each time step, data exchange 
occurs between the fluid solver and the inhouse code.

2.1. Multi-body dynamics algorithm
The biomimetic problem to be solved is complicated 
and can include multiple degrees of freedom related 
locomotion of a fish body, such as translation and 
rotation. Fish forward motion induced by the 
undulation of the body or fins is also one of the 
numerical FSI solutions. In addition, fish fins may 

undergo independent locomotion, which is different 
from the main body. It is thus very challenging to use 
traditional rigid body dynamics to solve this problem. 
To cope with this, the dynamics of the model is 
handled by a MBD method based on previous work 
[9, 39, 40]. Primarily, at each time step, the fluid force 
applied on each element/body in the MBD model is 
obtained from the fluid solver and passed to our in
house code. The overall force on the entire model is 
the accumulation of all relevant elements. With the use 
of Newton’s Second Law, the entire dynamic model 
acceleration is determined. By integrating once and 
twice with time, the velocity and location relative to the 
global coordinate is obtained, respectively. The above 
process always starts with a specified reference body 
(see figure 1), then to each element along different 
branches based on a Euler transformation matrix 
and hinge constraints which will be described in the 
following sections.

2.1.1. Model description
The whole model is considered as being constructed 
with several separate elements/bodies as given 
in figure 1. These elements can be either rigid or 
deformable. In the present algorithm, the deformation 
of elements is achieved by prescribing the motion at 
each grid point on the surface of elements. There 
are two types of coordinate in this system, i.e. global 
coordinate Oe and local coordinates Oi . The reference 
body B0 is specified and coloured in grey. Several 
branches exist, indicated by blue arrow dashed lines, 
relative to the reference body B0. Apart from the 
reference body B0, other elements in the branches are 
given numbers in the orders of 1 to the last element. 
Two adjacent elements are connected with one virtual 
hinge Hi. At each hinge, there is only one degree of 
freedom motion that can be imposed, i.e. rotational 
motion about local z axis. By adding more than one 
virtual hinge, multidegrees of freedoms can be 
achieved. For the model consisting of rigid elements, 

Figure 1. Sketch of multibody treelike and seriallike model. The treelike model has one reference body (as coloured in grey) and 
more than one terminal body (B1, Bi, Bi+m, Bi+m+n). The seriallike model has only one reference body and one terminal body. A 
treelike model can be treated as composing of several branches of seriallike models and all the branches share one reference body.
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prescribed rotational acceleration θ̈i can be provided 
at each hinge so that within one time step the angular 
velocity θ̇i and angle θi at each hinge is known. In 
terms of a system with deformable elements, the 
hinge motion is zero, i.e. there is no relative rotational 
motion between two adjacent elements connected 
by the hinge. An index vector a is employed to store 
element/body connection information, which is vital 
for a treelike MBD system.

2.1.2. Euler transformation
Transformation between two successive local 
coordinates is completed based on the Newton–Euler 
Frame. A homogeneous transformation matrix 
jTi which transforms the initial location/position 
from a local coordinate of body Bi(Oi, xi, yi, zi) to 
Bj(Oj, xj, yj, zj) is defined as:

jTi = rot(xi,αj)trans(x′, dj)rot(z′′, qj)trans(z∗, rj)

=




cos qj − sin qj 0 dj

cosαj sin qj cosαj cos qj − sinαj −rj sinαj

sinαj sin qj sinαj cos qj cosαj −rj cosαj

0 0 0 1


 .

 (1)

Referring to figure 2, transformations operate along 
the x and z axis in order. The local coordinate of body 
Bi(Oi, xi, yi, zi) firstly rotates around the xi axis with an 
angle of αj , translates along the x′ axis with a distance 
of dj, then rotates about the z′′ axis with an angle of qj, 
and translates along z∗ axis with the distance rj to get 
the final local coordinate of body Bj(Oj, xj, yj, zj).

When the angular motions θa on the hinge con
necting two consecutive bodies is specified, the trans
formation matrix jTi(θa) is divided into one (3 × 3) 
rotation matrix jRi(θa) and one (3 × 1) position vec
tor jPi as:

jTi(θa) = rot(xi,αj)trans(x′, dj)rot(z′′, qj + θa)trans(z∗, rj)

=

(
jRi(θa)

jPi

0 1

)
.

 

(2)

The angle θa is determined by looking through the 
index vector a. An adjoint map operator Ad jgi

 is 
introduced for the transformation of inertia, force and 
velocity from body Bi to body Bj and is defined as:

Ad jgi
=

(
jRi(θa)

jRi(θa)
iP̂T

j

0 jRi(θa)

)
. (3)

iP̂j  is a (3 × 3) skewsymmetric tensor and can be 
obtained from the (3 × 1) position vector iPj .

2.1.3. Force and acceleration
The fluid force of each element is obtained by fluid 
solver at each time step and notated as a (6 × 1)force 
vector Fext,j , including force and moment in three 

directions. The net force β∗
j  on the terminal body is 

defined as:

β∗
j = βj − Fext,j (4)

where βj is a (6 × 1) Coriolis and centrifugal forces 
vector. For detailed derivation, refer to Porez et al 
[9]. The inertia tensor Mj consists of a (3 × 3) tensor 
of body mass Mj, two (3 × 3) tensors of first inertia 

moments MŜj and a tensor of angular inertia Ij :

Mj =

(
Mj −MŜj

MŜj Ij

)
. (5)

As body Bi is followed by body Bj, the inertia tensor 
and force between these two bodies is linked by the 
following equations:

M∗
i = Mi + AdT

igj
M∗

j Adigj

β∗
i = (βi − Fext,i) + AdT

igj
(M∗

j (Aθ̈j + ςj) + β∗
j ).

 
(6)

Here, A is a (6 × 1) unit vector, θ̈j is the angular 
acceleration on hinge j, ςj represents the acceleration 
induced by the acceleration transformation between 
local coordinates of two successive bodies [40].

By accumulating the force and inertia tensor from 
the terminal body back to the reference body, the accel
eration η̇0 of reference body B0 in the local coordinate 
can be estimated as:

η̇0 = −(M∗
0 )

−1
β∗

0 . (7)

2.1.4. Velocity and position
The status of the whole system relative to the 
earth coordinate is decided by the reference body 
B0(O0, x0, y0, z0). Its velocity η0 in the local coordinate 
is solved using the 4th order Runge–Kutta scheme as 
follows:

η0|t+1 =

(
V0|t+1

Ω0|t+1

)
= η0|t +

�t

6

(
η̇0|1t + 2 η̇0|2t+∆t

2

+2 η̇0|3t+∆t
2
+ η̇0|4t+∆t

)

 

(8)

Figure 2. Coordinate transformation: transformation 
matrix jTi from local coordinate Oi  of body Bi to the local 
coordinate Oj  of body Bj.

Bioinspir. Biomim. 13 (2018) 056001
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where V0 and Ω0 represent a (3 × 1) linear vector and 
a (3 × 1) angular velocity vector in the x, y, z direction. 
The velocity η0 of the reference body in the local 
coordinate can be transferred to the earth coordinate as:

eη0 =
eR0η0 (9)

where eR0 is a (3 × 3) matrix associated with the 
orientation of the reference body. With a (3 × 1) 
position vector eP0, the transformation matrix eT0 
between the earth coordinate and the reference body 
is:

eT0 =

(
eR0

eP0

0 1

)
. (10)

Velocity for the other bodies is calculated recursively 
from the reference body forward to the terminal body. 
The transformation of velocity η from an anterior 
body Bi to its following body Bj is defined as:

ηj = Ad jgi
ηi + θ̇jA, (11)

where θ̇j is the angular velocity of the hinge j connecting 
bodies Bi and Bj.

The position of other bodies relative to the global 
coordinate is also obtained by transforming from the 
reference body forward to the terminal body using the 
following equation:

eTj =
eTi

iTj(θa)

=

(
eRj

ePj

0 1

)
 

(12)

where eTi  and eTj  are the transformation matrices for 
bodies Bi and Bj; eRj  and ePj are the orientation matrix 
and position vector of body Bj. All the variables are in 
the earth coordinate.

2.2. Fluid solver
As mentioned earlier, the fluid flow around fish and 
fins are solved using ANSYS Fluent, a finite volume 

method (FVM) CFD tool. The governing equations are 
incompressible continuity and momentum equations:

∂�u
∂t + (�u · ∇)�u = − 1

ρ∇p + µ
ρ∇

2�u

∇ · �u = 0
 (13)

where �u = (u, v, w) is the fluid velocity vector, p is the 
fluid pressure, µ is the fluid viscosity and ρ  is the fluid 
density. The present study assumes that flow is laminar.

Pressure–velocity coupling is achieved by ena
bling noniterative time advancement (NITA) and 
the selection of the fractional step method (FSM), 
as the NITA scheme can reduce the splitting error by 
using  subiterations per time step and thus computes 
quicker than iterative time advancement (ITA) by per
forming only a single outer iteration per timestep. 
In FSM, momentum equations are decoupled from 
the continuity equation. A firstorder implicit time 
marching scheme is adopted for the transient terms. 
In terms of spatial discretization, a Least Squares Cell 
Based approach is employed for the gradient. A sec
ondorder scheme is used for pressure interpolation to 
improve accuracy. The secondorder upwind scheme 
is employed for diffusive term discretization.

Due to the large deformation of the mesh when fish 
swim, the dynamic mesh function available in Fluent is 
used. As a body in the MultiBody system could be con
sidered as either rigid or deformable, different forms of 
User Defined Functions are used for the dynamic mesh 
zones. Given rigid bodies, the velocity of each body 
should be imported to Fluent. As for deformable bod
ies, the position of every mesh node on the deformable 
body surface is calculated in the MBD code and given 
to Fluent at each time step. These variables are relative 
to the global coordinate.

2.3. Coupled algorithm
At each time step, the transfer of data is needed 
between the fluid solver and UDF. At the beginning of 
each time step, the velocity and position of each body 
relative to the global coordinate is transferred to Fluent 
to calculate the fluid force around the model. Such 
information is then delivered back to the MBD code to 
predict the velocity and position of the fish at the next 
time step.

A vector �
(

Xstate, θ̇j, θj

)
 collects the status Xstate of 

reference body B0, the angular velocity θ̇j and the angle 
θj of all the hinges, j in total, in a model:

�
(

Xstate, θ̇j, θj

)
= �

(
eV0, eΩ0, eP0, eQ0, θ̇j, θj

)
.

 (14)

Table 1. Summary of the case studies.

Case No. Problem type Dimension

Rigid/deformable 

element in model Algorithm type

1 Fish body undulation Discrete model 2D Rigid Treelike

2 Continuous model 2D Rigid Seriallike

3 Single caudal fin 3D Rigid  +  Deformable Seriallike

4 Fish with multiple fins 3D Rigid  +  Deformable Treelike

Figure 3. Sketch of coordinate setting for the discrete fish 
body model.

Bioinspir. Biomim. 13 (2018) 056001
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Generally, to predict a new time step, a 4th order 
Runge–Kutta explicit time discretization is employed 
as:

�|t+∆t =�|t +
∆t

6
(�̇|1t + 2�̇|2t+∆t/2

+ 2�̇|3t+∆t/2 + �̇|4t+∆t).
 

(15)

Here, ∆t stands for time step size.

3. Case studies

Four problems are used to validate the numerical 
methodology described in section 2, as summarised in 
table 1. In particular, (a) an undulating selfpropelled 
discrete eellike swimming model; (b) a selfpropelled 
continuous eellike swimmer; (c) a fish robot with 
caudal fin cupping motion; (d) a selfpropelled fish 
driven by its multiple deformable fins. These problems 

Figure 4. Computational domain of discrete fish body simulation.

Figure 5. Velocity and displacement comparisons between Eldredge [23] and present study on the rotational motion, X and Y 
direction of the reference body. (a) Rotational motion. (b) X direction. (c) Y direction.

Bioinspir. Biomim. 13 (2018) 056001
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cover FSI induced forward motion, combined fish 

body and fins as well as rigid and deformable fins.

3.1. Discrete fish body undulation
By modelling a fish as several articulated solid bodies,  
Kanso et al [47] first analysed its locomotion in 
ideal fluid. Furthermore, Eldredge [23] simulated 
a simplified undulation motion of an anguilliform 
freeswimming fish with a twodimensional model 
made of three identical rigid elements. This can be 
considered as splitting a continuous eellike fish 

body into several separate elements connected 
by joints. The geometric shape of each element is 
ellipse, with an aspect ratio of major versus minor 
axis of 10. The length of each element is a, and the 
distance d between each body is 0.2a. To use our MBD 
method, the middle body is selected as the reference 
body B0, the other two bodies, numbered as B1 and 
B2, are treated in two different branches. The local 
coordinate system for each body is illustrated in 
figure 3. In order to obtain comparable results with 
the previous study, the rotational angular motions (θ1 

t=0.8T

t=1.6T

t=2.39
T

t=3.18
T

t=3.98
T

(a) (b)

Figure 6. Vorticity structure comparisons with the values from  −5 to 5 in 40 levels. (a) Contours of Eldredge [23]. (b) Contours of 
present study.

Figure 7. Anguilliform fish model.

Bioinspir. Biomim. 13 (2018) 056001
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and θ2) are specified between two adjacent bodies (B0 
and B1, B0 and B2) as:

θ1(t) = cos(t − π
2 )

θ2(t) = − cos(t).
 (16)

An undulation Reynolds number [23] is used in 
the present study and is equal to 200 via the following 
equation:

Re =
θ̇maxa2

υ
 (17)

where θ̇max is the maximum angular velocity, a is the 
length of each ellipse, and υ is the kinematic viscosity.

The computation is performed in a domain with 
a size of 30a × 20a, shown in figure 4, which is large 
enough to avoid the boundary influence. The model 
is placed 10aand 8a away from the inlet and upper 
boundary, respectively. Around the model, a small 
inner zone is designed to better capture the vortex 
structure around the swimming body. Unstructured 
triangular meshes are applied to the whole computa
tional domain and the overall grid number is around 
141 000. At the surface of the three elements, no slip 
boundary conditions are imposed. A constant veloc
ity (�u = (0, 0, 0)) are set to the left, upper and lower 
boundary and the pressure at the right boundary is set 

to ambient pressure. Time step is set as ∆t = T
500 after 

testing, where T is the undulating period.

Detailed comparison of results between the pre
sent study and Eldredge [23] is given in figures 5 and 
6. It should be noted that, the whole numerical model 
is free in X and Y directions, while a rotational motion 
is possible for the central element. Figure 5 displays the 
comparison between the present study and in terms of 
the induced rotational angle α, the angular velocity α̇, 
and the velocity and displacement in X and Y direction 
at the central point O0 of body B0, normalized either 
by the body length a or velocity θ̇maxa. The induced 
velocity is periodic for both rotational (α̇) and trans
lational (U and V) motion. The mean linear velocity is 
positive for U and negative for V, and hence the undu
lating fish moves towards the positive X and negative Y 
direction. Meanwhile, the displacement in the Y direc
tion is smaller and more oscillated than that in the X 
direction. For rotational motion, the rotational angle 
α varies from an approximate  −0.8 rad to 0.2 rad.

Figure 6 is the vorticity field comparison at five 
instantaneous times. The foremost element gener
ates vortex, which moves backwards from two sides 
and merges with the boundary layer. The vortex sheds 
off at the tip of body B1 and obvious vortex street can 
be observed in the downstream of the model. Overall 
a good comparison with the previous study is clearly 
demonstrated.

The successful validation of applying our MBD 
algorithm to this discrete model is vital in the bio

Figure 8. Prescribed angular motion on hinges of anguilliform fish.

Figure 9. Computational domain of anguilliform fish.
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inspired robot area, as most anguilliform robot fish 
are made of a series of modules with motion control 
actuators placed between two adjacent modules, such 
as AmphiBot III [9].

3.2. Continuous Anguilliform fish undulation
To demonstrate that the established MBD is also 
applicable to modelling continuous body locomotion 
like an anguilliform mode, a 2D selfpropelled eellike 
fish model is selected in this section, which is taken 
from Carling et al [19].

The model is constructed using eight trapezoidal 
bodies, as shown in figure 7. The length ∆s of each 
body at initial time is identical. Based on the geometry 

provided by Carling et al [19], the total fish length l is 
0.08 m. The width of the whole model is defined as:

wn = 0.0064 − 0.0048(3 − 2sn/l)s2
n/l2 (18)

where sn stands for the distance from the fish head to 
the current hinge location (nth). The widest length 
of the model w is at the fish head with a value of 
0.0064 m.

At the onset, there is no bending of the fish body, 
thus its central line is a straight line. Previous stud
ies used a prescribed central line kinematic undu
lating motion to drive the fish to move forward. 
The vertical linear motion of the central line was 
described as:

Figure 10. Velocity comparisons (blue lines: results of Carling et al [19]; red lines: present results).

Figure 11. Vorticity contour for 15 undulating periods (z vorticity with the values from  −3 to 3 in 20 intervals).

(a) (b)

Figure 12. Experimental model of fish pedunclecaudal [43]. (a) Component of model. (b) Sketch of experiment.

Bioinspir. Biomim. 13 (2018) 056001
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yn =
sn/l + 0.25

1.25
sin[(sn/l − t) · 2π/T] (19)

where yn stands for the vertical movement of the 
central line at location sn [19]. Simulation is carried 
out at a specific period T of 1.2 s.

To use the present MBD algorithm, the central line 
motion is converted to a series of angular motions 
imposed at each virtual hinge. The angular motion 

on hinge n is determined by three successive vertical 
movement yn+1, yn and yn−1 at the location of sn+1, sn 
and sn−1, respectively, which is indicated in figure 7 and 
described by the following equation:

θn = arctan
yn+1 − yn

�s
− arctan

yn − yn−1

�s
. (20)

The variable θn is the angular motion on the nth 
hinge and is given as a known variable into the 

(a) (b)

(c) (d)

Figure 13. Fish pedunclecaudal CFD model and dimensions. (a) Fish pedunclecaudal model. (b) XZ view and caudal fin 
dimensions. (c) YZ view and peduncle dimensions. (d) XY view and peduncle dimensions.

Figure 14. Sketch of fish pedunclecaudal computational domain.

Bioinspir. Biomim. 13 (2018) 056001
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MBD algorithm. A transition function β, as shown 
in equation (21), is utilised in the first undulation 
period to ensure the angle increases gradually such 
that no breakdown of the iteration could occur due 
to a dramatic change of angle. Figure 8 displays the 
prescribed angular motion profiles θn at all seven 
hinges within the first cycle—a transition cycle as 
discussed above.

θn = βθ̂n

β =

{
1−cos(πt/1.2)

2 0 � t � 1.2 s

1 t > 1.2 s
.

 
(21)

The simulation is carried out in a domain as pre
sented in figure 9. The model is placed 5l away from the 
outlet boundary. The whole domain is split into inner 
and outer zones to ensure good mesh quality around 
the model. No slip boundary is set on the surface of 
the fish. The pressure at the downstream boundary is 
given as ambient pressure. The other three boundaries 
are set as constant velocity (�u = (0, 0, 0)). The mesh 
in the entire domain is triangular mesh. A time step of 

∆t = T
300 is selected for the simulation.

Figure 10 shows the forward and lateral velocity 
comparisons with Carling et al [19]. It is clear that our 
results compare well with the previous study. As the 
first undulating period is taken as a transition stage, 
only the body shape is modified. Thus, the FSI induced 
forward velocity remains at zero and there is no trans
lational motion of the fish. From the second period 
onwards, the fish begins to accelerate and then reaches 
a quasistable status.

The vorticity field of the fish swimming within 
15 undulating periods is plotted in figure 11 with the 
existence of a typical reversed Karman Vortex struc
ture. In one undulating period, the beating amplitude 
of the fish tail has two peaks indicating that the vortex 
shed twice in one period.

The above comparison between our numerical 
results and others provides evidence that our devel
oped tool offers a new means to address a continuous 
fish body undulation via splitting a deformable body 
into multiple rigid elements.

3.3. Fish peduncle-caudal cupping motion
A series of experimental work has been performed 
[8, 43] to study the hydrodynamic characteristics of 
a robotic caudal fin to mimic the homocercal tail of 
the Bluegill Sunfish. Motions of both peduncle and 
caudal fin were replicated via a properly designed 
robotic model as shown in figure 12. The peduncle is 
connected to a strut, which allows translational and 
rotational motions. A force and flow visualization 
experiment was carried out in a small water tunnel 
using a constant towing speed u. The cupping 
motion of a passively deformable caudal fin is 
achieved via fabricating the fin surface using a black 
silicone membrane and prescribing the motion of 
each fin ray.

Based on the experimental model, our CFD model 
is constructed and displayed in figure 13(a). The cau
dal fin is modelled as an axisymmetric shape with its 
thickness omitted. The geometry is defined by pro
viding the chord lengths at four angles (7.5°, 17.5°, 
27.5° and 37.5°) in figure 13(b). The caudal peduncle 
is modelled as a wedged body with three dimensions 
(L × W × H) indicated in figures 13(c) and (d).

The computational domain, as shown in figure 14, 
is large enough to minimise the influence of the outer 
boundaries. The model is placed 4L away from the 
inlet boundary. Two mesh zones are generated with an 
inner zone having unstructured tetrahedral elements 
and an outer zone with structured hexahedral mesh. 
The total mesh number is approximately 430 000 and 
the unsteady time step is selected as 500 steps per time 
period. The inlet boundary is given as a constant veloc
ity, equal to the towing speed during the experiment, 
which is determined by the Strouhal number, and 
defined as:

St =
f · A

u
 (22)

where f, A and u is the frequency, translational 
motion amplitude and the inlet velocity respectively. 
The pressure at the right boundary is set to ambient 
pressure and the surrounding boundary is symmetry. 
The surface of the pedunclecaudal model is treated as 
a no slip boundary.

In accordance with the MultiBody algorithm 
described in section 2, the present model is considered 
as a twoelement system, i.e. the caudal peduncle (set 
as the rigid reference body B0) and the deformable cau
dal fin (B1). The caudal fin is connected to the peduncle 
by a virtual hinge with no rotational motion allowed. 

Figure 15. Definition of θ for the pedunclecaudal model.

Table 2. Motion parameters for the pedunclecaudal model.

a1 a2 a3

16 0.4677 0.0068

Bioinspir. Biomim. 13 (2018) 056001
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Referring to the experiment, the rotational and trans
lational motions are provided on B0, as defined in the 
following equations:

Translational ST = 0.02 sin(2πt)

Rotational AR = 0.2618 sin(2πt − π
2 ).

 (23)

The cupping motion of the deformable caudal fin 
can be treated as successive fin rays with different 
undulating amplitudes, given as:

ϕ = A(θ) sin(2πt) (24)

where θ is the angle between each fin ray (blue line in 
figure 15) and the x axis relative to its local coordinate 
(red line in figure 15); A (θ) is the amplitude of each 
undulating fin ray, described is:

A (θ) = a1 − a2θ + a3θ
2. (25)

Detailed values of the parameters used in equation (25) 

are given in table 2 taken from [43].
Simulations are performed for four Strouhal num

bers. Figure 16 compares the time averaged thrust 
between the experiment and CFD modelling at four St, 
where the thrust is defined as the total force acting on 
the peduncle and caudal fin in x direction:

Fthrust = Fpeduncle + Fcaudal. (26)

As seen from figure 16, the predicted results are 
consistent with the experiment. Within the St range 
tested, thrust increases with the St number. A variation 
of timedependent force is displayed in figure 17 
at St  =  0.3 for five time periods. Negative values 
stand for resistance while the positive values reflect 
propulsion force. Clearly, as indicated by their signs, 

peduncle always suffers resistance, possibly due to its 
blunt shape, while the deformable caudal fin generates 
propulsion force.

The flow visualization on the instantaneous vor
tex topology in one motion cycle is shown in figure 18 
from two planes. The vortices shed from the caudal fin 
generate a chain of vortex rings downstream. Further, 
the vortex rings are linked, which agrees with the find
ings of Lauder and Drucker [44].

It should be noted that some subtle differences can 
be observed between the experiment and the CFD at 
St = 0.2, 0.5. This might be caused by the caudal fin 
edge effect since it has a passive motion in the experi
ment, while in our CFD modelling the whole surface 
of the caudal fin is given a prescribed deformation 
extracted from experimental data.

The quantitative comparison between our CFD 
prediction and experimental data further demon
strates that the present MBD model can deal with 
complicated swimming locomotion, including both 
caudal peduncle rotational translational motions and 
flexible fin ray undulation.

3.4. Pufferfish with multiple deformable fins
For the sake of ensuring the feasibility of a free moving 
rigiddeformable MBD system, we apply our code 
to a selfpropulsion fish problem driven by dorsal, 
anal and caudal fins, such that the fins are considered 
deformable while the fish body is rigid.

Figure 19(a) shows the numerical model of a 3D 
pufferfish, which is extracted from the experimental 
data of a live pufferfish in figure 19(b). Detailed infor
mation about the experiment can be referred to in the 

Figure 16. Thrust comparisons between CFD results and experiment results [43].

Figure 17. Forces on peduncle and caudal fin in x direction at St  =  0.3.

Bioinspir. Biomim. 13 (2018) 056001
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(a) (b)

(c)

Figure 19. Morphology of the pufferfish. (a) CFD pufferfish model. (b) Live pufferfish in experiment. (c) Coordinates setting based 
on the MBD treelike algorithm.

Figure 18. Vortex topology (vorticity magnitude with values from 0 to 15 in 16 levels) for pedunclecaudal model at St  =  0.3 in one 
period from XZ and XY view.

Bioinspir. Biomim. 13 (2018) 056001
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paper by Li et al [45]. It was observed in the experi
ment that pectoral fins have subtle movements com
pared to dorsal and anal fins, and hence the kinematic 
analysis about the pair of pectoral fins was neglected 
in Li et al [45]. In order to ensure consistency with 
experimental observations, in the present CFD model
ling, the motion of pectoral fins is excluded. However, 
the method developed herein is able to cope with the 
dynamic motion of pectoral fins as long as the kine
matic data is available from the experiment.

The total length (L) of the model is approxi
mately 0.11 m and the shape of each crosssection 
of the fish body is close to elliptic. The maximum 
major and minoraxis of the body are approximately 
0.04 m and 0.03 m, respectively. All three fish fins are 
modelled as wedged surfaces. The density of the fish 
model is assumed to be the same as that of water, i.e. 
ρfish = ρwater, which is a reasonable assumption for 
major aquatic animals. Thus, the influence of gravity 
and buoyancy may be ignored.

Adopting the established multibody system con
cept, this model is considered as a fourelement sys
tem, as shown in figure 19(c). The fish body is selected 
as the reference body B0 and the other three elements 
are connected to B0, numbered as B2, B3 and B4 for dor
sal, anal and caudal fins, respectively.

To model the deformable fish fin, the exper
imentally measured kinematics are used. The experi
ments revealed that the dorsal and anal fins undulate 
in phase with each other, while there is a 180° (π) phase 
lag between the caudal fin and the other two fins. Each 
fin is treated as comprising of successive fin rays with a 
sinusoidal wave travelling from the anteriormost edge 
down along the fin rays [46]. No deformation along the 
fin spanwise direction is taken into account. The equa
tion to describe the undulated fin surface is expressed as:

ϕ = A(θ) sin(ωt + ψ(θ))
 (27)
where θ is the angle between each fin ray (blue line in 
figure 20) and the x axis relative to its local coordinate 
(red line in figure 20); ω = 32.8 rad s−1 is the undulating 
frequency; A(θ) and ψ(θ) are the undulating amplitude 
and phase angle of each fin ray, respectively.

For deformable dorsal and anal fins, amplitude and 
phase angle can be expressed as:

A(θ) = a1θ
3 + a2θ

2 + a3θ + a4

ψ(θ) = p1θ
3 + p2θ

2 + p3θ + p4.
 (28)

The prescribed motion of the deformable caudal fin 
surface can be defined as:

Ac(θ) = a1 + a2 cos(θωa)

ψc(θ) = p1 + p2 cos(θωp).
 (29)

Detailed parameters for the kinematics can be found 
in table 3 and the envelopes of flexible dorsal, anal 
and caudal fin in one undulating period are shown 

in figure 21. A time step size ∆t = T
500 is selected for 

the simulation, where T is the time period and equals 
0.192 s.

Figure 22 shows the induced selfpropelled fish 
swimming velocity and displacement in 30 undulating 
periods. Negative velocity indicates that the fish swims 
towards (−x) direction. The fish accelerates to a quasi
stable stage. The time averaged velocity for the flexible 
fins are 1.71 BL s−1. Evaluated against the experimental 
measurement, where 2 BL s−1 velocity is obtained for a 
live fish, our CFD result (1.71 BL s−1) is about 14.5% 
underestimated. Without considering the possible 
deformation of the flexible fins in a spanwise direc
tion in our CFD modelling, the predicted final induced 
swimming velocity is reasonable. This means that our 
treelike MBD code can solve the 3D selfpropelled fish 
with median fins.

Apart from the above data which is available from 
both experiment and CFD methods, our numerical 
simulation can also provide additional information 
which is typically difficult to achieve via experimental 
testing. These include motion displacement, hydrody
namic forces, propulsion efficiency and vortex wake 
around the fish. As displayed in figure 22, after swim
ming about 30 cycles, the pufferfish moves about 8 BL 
towards the negative x direction. The hydrodynamic 
forces on all three fins and body of the pufferfish is plot
ted in figure 23, normalized via the following equation:

Cf =
F

1
2ρf u2

xA
 (30)

Figure 20. Definition of θ for pufferfish fins.

Table 3. Motion parameters for pufferfish model with multiple 
fins.

Amplitude A (rad)

Dorsal Anal Caudal

ωa — — 6.07

a1 0.1353 0.0066 0.3861

a2 0.3204 0.3204 0.3204

a3 0.3563 0.3563 

a4 0.8898 0.8898 

Phase angle ψ (rad)

ωp — — —
p1 0.7247 0.7247 0.7247

p2 0.2648 0.2648 0.2648

p3 1.473 1.473 —
p4 4.106 4.106 —
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where F  represents the force, ρf  is the fluid density, 
ux is the time averaged velocity for steady swimming 
fish and A is the largest crossing area of the fish 
body. In figure 23, the negative values signify that 
the generated forces are towards the same direction 
the fish are swimming. As the fish swims steadily 
along the negative direction of x, a negative force is 
a reflection of thrust force, while a positive force is an 
indication of the drag or resistance force. The thrust 
generated by the deformable dorsal and anal fins are 
always negative, while the caudal fin produces a thrust 
larger than drag. The fish body always suffers drag 
while swimming.

In terms of propulsion efficiency, it is defined as the 
mean output power over mean total input power:

ηeff =
P̄out

P̄in
. (31)

As the pufferfish swims towards negative X direction, 
the output power Pout is obtained by multiplying the 

total propulsive forces Fpropulsion−x  by the induced time 
averaged velocity ux during quasistable swimming, 
shown as:

Pout = Fpropulsion−xux. (32)

The propulsion force Fpropulsion−x  is considered as being 
generated by dorsal Fdorsal−x , anal Fanal−x and caudal 
fins Fcaudal−x:

Fpropulsion−x = Fdorsal−x + Fanal−x + Fcaudal−x. (33)

The total input power Pin is defined by the 
multiplication of the torque τ  and the angular 
velocity ϕ̇:

Pin =
∑(

⇀
τ ·

⇀
ϕ̇
)

. (34)

Torque τ  is obtained by integrating the moment of 
pressure force along the fin’s rotation axis over each fin 
surface. For the deformable fin, the averaged angular 
velocity ϕ̇ of the whole fin surface is used. The time 

Dorsal Anal Caudal 

Figure 21. Envelopes of flexible dorsal, anal and caudal fin in one undulation period.

Figure 22. Velocity and displacement in X direction for a selfpropelled pufferfish with deformable fins.

Figure 23. Dimensionless force on the fish body, dorsal, anal and caudal fins during quasistable swimming.
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averaged input and output power is 1.79 mW and 0.8 
mW, respectively. Thus, the efficiency is 45.44%.

Detailed vorticity contour for deformable fins is 
displayed in figure 24. It is observed that dorsal and 
anal fins generate vortex, as does the caudal fin. Flow 
visualization results reveal that apparent interactions 
among caudal, dorsal and anal fins can be found for 
deformable fins.

4. Conclusion

In this work, we presented a newly developed 
method to solve bioinspired swimming problems. 
The locomotion of fish and fins is simulated using a 
multibody dynamic theory and the fluid flow field 
around the fish is investigated with a CFD numerical 
method. Four case studies were tested, including a 
threelinked rigidbody swimmer, one anguilliform 
fish model, a cupping motion of a caudal fin and a 
selfpropelled pufferfish with dorsal, anal and caudal 
fins. Our research relates to previous studies on the 
undulating motion of both a discrete eellike model 
and a continuous eellike body, single caudal fin 
oscillation and fish swimming induced by multiple 
fins’ undulation. Numerical results are compared 
with data from other available resources and good 
comparisons are made. We have shown that this new 
modelling tool can be applied to comprehensive 
studies on fish swimming behaviour via either the 
undulating or oscillating motion of both fish body and 
different types of rigid/deformable fins.
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