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Short Communication 

Computational Modelling of Non-Newtonian Effects on 
Flow in Channels with Moving Wall Indentations 

X. QING and M. DAMODARAN* 

Division of T h e m 1  and Fluids Engineering, Centre for Advanced Numerical Engineering Simulations, Nanyang Technological University, 
Nanyang Avenue, Singapore, Singapore 639798 

Non-Newtonian effects in a channel with moving wall indentations are assessed numerically 
by a finite volume method for solving the unsteady incompressible Navier-Stokes equations 
and using a power-law model exhibiting shear thinning viscosity and Casson's model as the 
constitutive equations for the non-Newtonian fluid. The computations show that for a non- 
Newtonian fluid, there are differences in the velocity profiles and in the structure and size of 
the reversed flow regions as compared with the corresponding Newtonian fluid. The 
comparison of non-Newtonian and Newtonian wall shear stress reveals a slight decrease in the 
magnitude on the average for the non-Newtonian case, eventually resulting in the strength of 
the "wave train" being slightly weaker than those corresponding to a Newtonian fluid. 

Keywords: Physiological flow; Non-Newtonian flow; Moving boundary 

1. INTRODUCTION 

The study of blood flow in physiological systems such 
as arteries or the left ventricle of the heart is a complex 
flow problem involving moving boundaries, unsteady 
flow phenomena and non-Newtonian flow character- 
istics. The aim of this work is to examine the impact 
of non-Newtonian effects on the flow phenomena 
associated with moving boundaries, which will 
provide useful insight into further investigation of 
physiological fluid flows. In this study, Newtonian and 
non-Newtonian fluid flow in a channel with a moving 
wall indentation is investigated by modifying the 
mathematical flow model and the numerical solution 

method used by Dernirdzic and Peric (1990) for 
modelling Newtonian flow for the same flow problem 
so as to assess the impact of non-Newtonian effects on 
the flow structure. 

2. FLOW PROBLEM DEFINITION AND 
NUMERICAL MODELLING 

The problem considered here is the unsteady New- 
tonian and non-Newtonian fluid flow through a 
channel with a wall indentation, which moves in a 
prescribed periodic manner. The geometric configur- 
ation of the flow domain is shown in Fig. 1 and the 

*Corresponding author. 
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FIGURE 1 The geometry of the channel under investigation. 

prescribed motion of the top wall is defined by Eq. (1) 

0.0051 1 - cos(27rf*)} for 0 < x < 0.04 
0.005{1 - tanh[0.0414(x - 0.055)]} for 0.04 < x < 0.065 (1) 

0 for x > 0.065 

The mathematical model for this study is based on 
the unsteady incompressible Navier-Stokes 
equations for a Newtonian fluid and the finite volume 
numerical method for solving these equations follows 
closely the method outlined in Demirdzic and Peric 
(1990). Blood flow in the vicinity of moving 
boundaries is assumed to be non-Newtonian, 
homogeneous, unsteady and incompressible relative 
to the moving boundary. To simulate the non- 
Newtonian flow, an additional constitutive equation is 
required. As the motivation for the current investi- 
gation is to develop a method for the further 
simulation of physiological flows, two non-New- 
tonian blood models, i.e. the power-law model and 
the Casson model, are used to model non-Newtonian 
effects in the present calculation. According to 
Walburn and Schneck (1976) within the shear rate 
range of 0.03 1 - 120 s-', the complex rheological 
properties of blood can be approximated using the 
power-law model [Eq. (2)] defined as 

where k is the consistency index, j the shear rate and 
n the non-Newtonian index. For blood of 45% 
haematocrit at a temperature of 37"C, k = 

0.0134Pa.sn and n = 0.785 where the shear rate is 

~ / m ~ .  The Casson model is defined [Eqs. (3) and (4)] 
as in Whitemore (1968) 

where -ry is the yield stress taking a value of 0.0048 Pa 
and p the dynamic viscosity such that p = 
0.0028 Pas. The two parameters characterising the 
present oscillatory flow are the Reynolds number 
(Re = pbU/p) and Strouhal number (St = b/UT), 
where U is the bulk velocity for flow through an 
uncollapsed channel of width of b. As comparison of 
non-Newtonian and Newtonian flows is the main 
focus of this work, the comparison is based on the 
Newtonian reference viscosity of pN = 
0.0035 N s/m2. The density of the blood is taken to 
be 1050 kg/m3 for the numerical simulations. 

Boundary conditions are specified at the inflow and 
outflow boundaries. At the inflow boundary, the flow 
in the channel upstream of the indentation is assumed 
to be a fully developed Poisseuille flow. At the 
outflow boundary, the components of the velocity 
gradients in the direction of the flow are set to zero. 
On the wall, the component of velocity along the 
direction parallel to the wall is set to zero while the 

expressed in s-' and shear stress is expressed in component of velocity normal to the wall is set to the 
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FIGURE 2 The comparison of computed streamline pattern variation with instantaneous time r* for Newtonian fluid and power-law and 
Casson non-Newtonian fluids during one periodic cycle. 

wall motion. The initial condition is set by assuming 3. RESULTS AND DISCUSSIONS 
that the flow is fully developed everywhere so that 
unsteady computations can be initiated from this atet Grid dependence tests have been carried out for 
in a time-accurate manner. accuracy, and the results shown below are based on a 
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FIGURE 3 The development of the velocity profiles for Newtonian and power-law models during one cycle at locations: (a) x / B  = 5.25; and 
(b) x / B  = 8.5. (-) Newtonian fluid, (A)  power-law model. 

fine computational mesh size consisting of 222 X 42 Casson fluids are compared in Fig. 2. The animation 
cells. The variation of the computed streamline of the velocity field variation with the instantaneous 
patterns at different instants of time (t* = 0.4, 0.6, time t* for Newtonian and non-Newtonian power-law 
0.8) within one periodic cycle of the motion of the fluids during one cycle is shown in the attached movie 
wall indentation for Newtonian, power-law and file (velociry.avi). Note that the background colours 
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FIGURE 4 The comparison of Newtonian and non-Newtonain flows for wall shear stress distribution (on the indented wall) at different 
times: (a) I* = 0.4; (b) I* = 0.6; (c) t* = 0.8. 

in the movie correspond to the relative pressure UIU,, and B is the localised channel width at t = t*. It 
contours. Comparison of these figures shows that the can be seen that for both Newtonian and non- 
flow structure is generally not influenced by the non- Newtonian fluids, at a fixed location (xlB), the 
Newtonian flow effects. However, a detailed com- velocity profiles depart from the parabolic shape with 
parison of the flow patterns clearly shows that the the motion of the wall (i.e. as t* > O), and finally 
wave of vortices generated in the downstream of returns to it at the end of the cycle (t* = 1.0). This 
indentation differs slightly from each other. The phenomenon signifies the occurrence of the vortices 
velocity vector, computed using the Casson model, is during one cycle as a result of the upstream wall 
closer to the corresponding Newtonian flow while indentation. It can be seen that the reversed velocities 
they are different from the power-law flow. The signifying flow separation first occur at t* = 0.2 and 
strength of the vortices, which is reflected as the crests x/B = 5.25. Fig. 3(a) and (b) also shows that the 
and troughs of the wave, seems weaker for the flow major differences between Newtonian and non- 
under the power-law model when compared with that Newtonian velocity profiles occur at t* = 0.6, 0.8 
of Newtonian and Casson flow. To clarify this aspect, when the top wall is moving back once the maximum 
Fig. 3(a) and (b) compares the velocity profiles for amplitude is reached. This phenomenon implies that 
Newtonian and power-law models during one cycle at the non-Newtonian effects on the flow structure is 
two specific locations downstream of the wall more pronounced during the second half cycle, i.e. 
indentation at x/B = 5.25 and 8.5. In both figures, (t* > 0.5). 
the horizontal axis corresponds to the value of the Fig. 4(a)-(c) shows the variation of the computed 
different instantaneous times t*, while the vertical wall shear stress on the wall indentation for 
axis corresponds to the non-dimensional velocity Newtonian and two non-Newtonian flows at four 
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FIGURE 5 Computed contours of viscosity corresponding to Casson and power-law fluids (1:0.005466, 17:0.0321004. 
d p  = 0.0019067 s-'). 

specific instants of time, t* = 0.4, 0.6 and 0.8. It can 
be seen that for all instances oft*,  the non-Newtonian 
shear stress distribution is similar to that of the 
Newtonian flow. However, at the same location (x) 
and same instant of time t*, the shear stress 
corresponding to Newtonian and Casson flow 
generally has a higher value than those predicted by 
the power-law model. This can be seen clearly for 
t* 2 0.6. 

Fig. 5 shows the computed contours of non- 
Newtonian viscosity at t* = 0.4, 0.6 and 0.8. The 

differences in the contour lines can be clearly seen 
from the figures as t* increases. As t* increases during 
the cycle, the viscosity contours also exhibit a wave- 
like behaviour. Fig. 6 compares the computed 
positions of wave crests and troughs at different 
instants of time corresponding to their flow test case 
for which St = 0.037 and Re = 507 with the 
experimental measurements of Pedley and Stephanoff 
(1985). It can be seen that the computed results for 
both Newtonian and non-Newtonian fluids are in good 
agreement with these experimental measurements 
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FIGURE 6 Comparison of the computed positions of wave crests of vortices B and wave troughs of vortices C corresponding to the flow for 
which St = 0.037, and Re = 507 with experimental results of Pedley and Stephanoff (1985). Legend for wave crests of vortices B: (0) 
experiments of Pedley and Stephanoff (1985); (X) computed power-law non-Newtonian flow; (A)  computed Newtonian flow. Legend for wave 
trough of vortices C: ( A )  experiments of Pedley and Stephanoff (1985); (+) computed power-law non-Newtonian flow; (m) computed 
Newtonian flow. Note that x, is the location at the middle of the downstream slope of the indentation. 

A 

A x +I 

wave crest of vortices B X A +  

Y B+ 

LCP 
xo A + 

¤ 
X 

XA A 

even though minor quantitative differences can be gated while fluids obeying the power law exhibit 
seen. With regard to the non-Newtonian effect, the significantly different flow features than Newtonian 
results of the power-law flow show a slightly lower fluids under the same flow conditions. Examination of 
value than the corresponding Newtonian flow. the corresponding shear stress distribution and the 

maximum channel velocity enables the assessment of 
the impact of non-Newtonian effects for unsteady 

4. CONCLUSIONS physiological flow fields that are considered in this 
study. 

In this work, unsteady incompressible Newtonian and 
non-Newtonian flows in a channel with a moving wall 
indentation have been computed. Rheological models ~~f~~~~~~~ 

for blood based on a simple power-law model 
exhibiting shear thinning viscosity and a casson Demirdzic, I. and Peric, M. (1990) "Finite volume method for 

prediction of fluid flow in arbitrarily shaped domains with 
model displaying yield stress were used for the moving boundaries", Int. J. Nume,: Meth. Fluids 10, 771-790. 
computation of unsteady non-Newtonian flows. On Pedley, T.J. and Stephanoff, K.D. (1985) "Flow along a channel 

with a time-dependent indentation in one wall: the generation of 
the basis of the computed velocity fields and wall vortices waves", J.  Fluid Mech. 160, 337-367. 
shear stress distributions, it can be concluded that Wdburn, F.J. and Schneck, D.J. (1976) "A constitution for whole 

human blood", Biorheology 13. 201-210. 
fluids obeying the law behave as Whitemore, R.L. (1968) Rheology of the Circulation (Pergamon 
Newtonian fluids under the flow conditions investi- Press, Oxford). 


