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Peristaltic pumping is a process of fluid transport arising from the progressive waves, which travel along
the walls of a flexible channel. It is a primary physiological transport mechanism that is inherent in
many tubular organs of the human body such as the ureter, the gastro-intestinal tract, the urethra, and so
on. Many studies exist in literature with the aim of understanding the characteristics of peristaltic flow
under the assumption of low Reynolds number and infinitely long wavelength in a two-dimensional
channel. However, peristaltic pumping is also the mechanism used in other industrial applications such
as the blood pump for which the Reynolds number has a moderately high value. As studies concerning
moderate to high Reynolds number flow in the circular tube are rare in literature, in the present study,
the peristaltic flow of an incompressible fluid is numerically simulated using the finite volume method
for solving the incompressible Navier–Stokes equations in primitive variable formulation by means of
an infinite train of sinusoidal waves traveling along the wall of an axi-symmetric tube. The
computational model presented in this work covers a wider range of Reynolds number (0.01–100),
wave amplitude (0–0.8), and wavelength (0.01–0.4) than the those attempted in previous studies
reported in literature and some new results pertaining to the distribution of velocity, pressure, wall shear
stress for different peristaltic flow conditions characterizing flow at moderately higher Reynolds
number have been obtained. The effect of the wave amplitude, wavelength, and Reynolds number on
the “flow trapping” mechanism induced by peristalsis has also been investigated here for higher ranges
of values of the parameters characterizing peristalsis.
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INTRODUCTION

Peristaltic flow is generated in a channel or a circular tube

when a progressive wave travels along the wall. It is a

primary transport mechanism inherent in many tubular

organs of the human body such as the ureter, the gastro-

intestinal tract, the urethra, etc. Many studies have been

carried out for understanding the characteristics of the

transport mechanism associated with peristaltic flow under

the assumption of low Reynolds number and infinitely

long wavelength such as by Shapiro et al. (1969) and

Jaffrin and Shapiro (1971). However, peristaltic pumping

is also the transport mechanism used in other industrial

and medical applications such as the blood pump in which

the Reynolds number has a moderately higher value. The

investigation of peristaltic flow in circular tube in the

moderate and high Reynolds number range is therefore

important. The present study is therefore motivated by the

fact that attempts to model peristaltic flow in the moderate

to high Reynolds number range is relatively few.

The main difficulty encountered in modeling the flow in

the range of moderate Reynolds number is the non-

linearity caused by the interaction of the moving wall and

the curvilinear flow field. The analytical works of Fung

and Yih (1968) and Jaffrin (1973) for the flows in a two-

dimensional channel have been carried out under various

simplifying assumptions such as small amplitude wave,

infinite wavelength, low Reynolds number, and time-mean

flow rate. Numerical simulations of peristaltic flows have

been reported by Brown and Hung (1977), Takabatake and

Ayukawa (1982), Pozridikis (1987), Rathish Kumar and

Naidu (1995). Studies of peristaltic flow in circular

cylindrical tubes have been addressed by only a few

researchers. Early theoretical works included those of

Shapiro et al. (1969) and Yin and Fung (1969) with more

or less limitations on the wave amplitude, wavelength for
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lower Reynolds number. A numerical study based on the

vorticity-stream function method has been conducted by

Takabatake et al. (1988) in which the effect of Reynolds

number and mean flow rate on the “trapping” phenomena

has been investigated for a wave number of 0.01. As

peristaltic flow in the circular tube or axi-symmetric case

is more realistic than the two-dimensional channel and

hence is worthy of further study from the point of view of

physiological, medical, and general industrial

applications.

In the present study, the peristaltic flow of an

incompressible fluid by means of an infinite train of

sinusoidal waves traveling along an axi-symmetric

circular tube is numerically simulated using a finite

volume method for solving the incompressible Navier–

Stokes equations in primitive variable formulation and the

approach differs from the earlier theoretical works and the

study of Takabatake et al. (1988) in that the computational

model presented in this study is extended to moderate

Reynolds number (up to 100), wave amplitude, and

wavelength. The study also focuses on the effect of the

wave amplitude, wavelength, and Reynolds number on the

flow structure. The simulation will also yield the velocity,

pressure, wall shear stress distributions for different

peristaltic flow conditions and enables the study of the

influence of flow and geometry conditions on the strength

and size of fluid “trapping.”

In the following sections, the mathematical model and

the numerical solution of these models are outlined briefly.

This is followed by the verification of the method for two

test cases and is followed by the discussion of the

computed numerical results for the flow field, pressure

distribution and wall shear stress in a circular tube with an

infinite wavelength wave traveling along one wall. The

conclusions will be made in the final section.

MATHEMATICAL MODELING AND NUMERICAL

METHODS

The flow problem at hand is shown graphically in Fig. 1(a)

and (b), which shows the propagation of an infinite

sinusoidal wave train along the walls of an axi-symmetric

tube in the axial direction defined in the fixed laboratory

frame coordinates (Z, R ). The peristaltic motion deforms

the wall of the tube according to the equation:

HðZ; tÞ ¼ h 2 1 cosð2p=lÞðZ 2 ctÞ ð1Þ

where t is the time, h is the mean distance of the wall from

the symmetric axis, e is the wave amplitude, l is the

wavelength and c is the wave speed.

In the fixed coordinate frame (Z, R ) (the laboratory

frame), the flow in the channel is unsteady because of the

zZ, U

R, V

r, v

λ

ε

h
η(r)

c

H(Z )

(a)

(b)

FIGURE 1 Configuration of peristaltic flow in two-dimensional axi-symmetric tube. (a) Typical orientation of wall shape during peristalsis (b)
Definition of the parameters characterizing peristalsis.
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moving boundary. However, the flow in the moving

coordinate system (z, r ) (the wave frame), which travels in

the positive Z-direction with the same speed as the wave is

steady. The transformation between the two frames are

given by:

z ¼ Z 2 ct ð2:1Þ

r ¼ R ð2:2Þ

uðz; rÞ ¼ UðZ 2 ct;RÞ2 c ð2:3Þ

vðz; rÞ ¼ VðZ 2 ct;RÞ ð2:4Þ

where (U, V ) and (u, v ) are the velocity components in the

laboratory and the wave frame, respectively. In the present

study, the flow will be treated as steady and solved in the

wave frame. The flow structure in the laboratory frame

will be derived from this steady solution by using the

above relations.

In the wave frame, the integral forms of the continuity

and Navier–Stokes equations take the following general

forms: ð
S

rð
!
vÞ d

!
S ¼ 0 ð3Þ

ð
S

½rð
!
vÞv 2 T� d

!
S ¼

ð
V

Sv dV ð4Þ

where T is the stress tensor.

The momentum conservation equation for the Cartesian

velocity components ui are as follows:ð
S

½rð
!
vÞui 2 ti�d

!
S ¼

ð
V

Su dV ð5Þ

where:

ti ¼ T·ii

¼ 2 pþ
2

3
mdiv v

� �
ii þ mgrad ui þ mðgradvÞT·ii ð6Þ

and m denotes the dynamic viscosity of the fluid. In the

wave frame, the shape of the peristaltic wall can be

represented by:

hðzÞ ¼ h 2 1 cosð2pz=lÞ ð7Þ

The boundary conditions for the wall r ¼ hðzÞ and the

symmetric plane r ¼ 0 can be expressed as follows:

›u

›r
¼ 0; v ¼ 0 on r ¼ 0 ð8:1Þ

u ¼ 2c v ¼ 2
2p1

l
c sin

2pz

l
on r ¼ hðzÞ ð8:2Þ

The flow rate q in the wave frame has the following

relationship with the time-mean flow rate in the laboratory

frame �Q:

q

ph2c
¼

�Q

ph2c
2 ð1þ 0:5f2Þ ð9Þ

The non-dimensionless relative pressure is defined as:

�p ¼
h2

mcl
ðp 2 prefÞ ð10Þ

and the non-dimensional pressure rise along one

wavelength is defined as:

D�p ¼ ðh2=4mclÞðDplÞ ð11Þ

where p and Dpl is the dimensional pressure and pressure

rise along one wavelength, respectively, while pref is the

reference pressure at the point z ¼ r ¼ 0:
In order to make comparisions with the studies of

Takabatake et al. (1988), an estimate of the stream

function defined as:

u ¼ 2
1

r

›c

›z
v ¼

1

r

›c

›r
ð12Þ

from the computed velocity fields is necessary. As both

the planes r ¼ 0 and r ¼ hðzÞ constitute the streamlines in

the wave frame, the flow rate q in the wave frame is

constant. The stream function at r ¼ 0 and r ¼ hðzÞ satisfy

the following equation.

c ¼ 0 on r ¼ 0 and

c ¼ cwall ¼ q ð¼ constantÞ on r ¼ hðzÞ
ð13Þ

The problem of the peristaltic flow is controlled by four

dimensionless parameters, namely the amplitude ratio

f ¼ ð1=hÞ; the wavenumber a ¼ ðh=lÞ; the Reynolds

number Re ¼ ðcha=y Þ; which represents the ratio of

inertial and viscous terms when peristalsis acts as a pump

as described by Shapiro et al. (1969) and which also

represents the ratio of radial vorticity diffusion time to the

period of the wave and the dimensionless time-mean flow

rate �Q=pch 2: The estimation of these parameters and their

inter-relationships from the computational simulation will

assist in the characterisation of persitaltic flows in the

moderate to higher ranges of Reynolds number.

The flow generated by an infinite train of peristaltic

waves can be treated the same way as the periodic flow

that appears in the central part of the finite computational

region. The computational domain in the present study is

shown in Fig. 2 as the finite region A-B-C-D-E-F with two

waves in the wave frame. (two cycles). Periodic boundary

conditions are imposed on the sections CD, FA as follows:

uAFðz; rÞ ¼ uCDðz; rÞ ¼ uBEðz; rÞ ð14:1Þ

vAFðz; rÞ ¼ vCDðz; rÞ ¼ vBEðz; rÞ ð14:2Þ
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The integral forms of the conservation Eqs. (3–6) are

discretized on non-orthogonal grids using the finite

volume approach and a collocated arrangement of

variables on the computational grids. The typical control

volume is shown in Fig. 3. The conservation equations can

be written in the general form as follows:

j

Xð
Sj

½rð
!
VÞf 2 Gfgradf�d

!
S ¼

ð
V

SfdV ð15Þ

Equation (15) consists of three terms, namely the

convective term ð
P

j

Ð
Sj
½rf

!
V�d

!
SÞ; the diffusive term

ð
P

j

Ð
Sj
½2Gfgradf�d

!
SÞ and the source terms ð

Ð
V

Sf dVÞ:
The manner in which each of these terms are

approximated for numerical implementation is outlined

briefly below:

The convective term is expressed as:

j

Xð
Sj

½rf
!
V�d

!
S ¼ ½rf

!
V�e·

!
Se þ ½rf

!
V�w·

!
Sw

þ ½rf
!
V�n·

!
Sn þ ½rf

!
V�s·

!
Ss ð16:1Þ

where
!
Si ði ¼ e;w; n; sÞ is the surface vector. For the e side,

which can be expressed as:
!
Se ¼ ðyne 2 yseÞ

!
i 2 ðxne 2 xseÞ

!
j ð16:2Þ

The convective flux of a variable f through the e face

can be expressed as:

Ce ¼

ð
Se

rfð
!
VÞd

!
S < refeð

!
VÞ·

!
Se < Fefe; ð16:3Þ

In the above expressions, fe represents the cell face

mean value of the variable f, which should be obtained by

the values from two neighbor grid points fE and fW. The

convective flux Fefe is approximated using “deferred

correction” approach, which is the combination of the

second-order central differencing scheme (CDS) and first-

order upwind differencing (UDS):

ðFfÞe ¼ ðFfÞ
UDS
e þ g½ðFfÞUDS

e 2 ðFfÞUDS
e � ð16:4Þ

where gð0 # g # 1Þ is a factor allows the introduction of

numerical diffusion which can be used to control the

stability of the numerical scheme.

The diffusive fluxes through the e cell face can be

approximated as follows: (see Demirdzic and Peric (1990)

for details)

De ¼ 2

ð
Se

Gfgradf d
!
S

< 2
Gf

V

� �
e

½ðfE 2 fPÞð
!
Se·

!
SeÞ þ ðfn 2 fsÞ

� ð
!
Se·

!
SnÞ�e ð17Þ

The source term is integrated over the cell volume. By

assuming that the specific source is defined at the control

volume center and that it represents the mean value over

the whole control volume, this term can be approximated

as follows:

Sf ¼

ð
V

Sf dV < ðSfÞPV ð18Þ

The application of these approximations to each control

volume or grid cell in the discretized flow field and the

assembly of the fluxes through all the faces of one control

volume results in a system of algebraic equations which

links the value of the dependent variable at the center of

each control volume with those in the neighboring control

volumes as follows:

fP ¼
B
f
EfE þ B

f
WfW þ B

f
NfN þ B

f
SfS þ QP

B
f
P

ð19Þ

where the Bs are the coefficients containing contributions

from diffusion and convection terms. The B
f
P term is the

sum of all the other Bs and the contribution from unsteady

term. QP is the source terms containing all terms that are

treated as explicit.FIGURE 3 Sketch of control volume for numerical formulation.

FIGURE 2 Computational domain and grid system.
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The strongly implicit procedure (SIP) based on an

incomplete LU factorization of the coefficient matrix, is

used for solving the unknowns. The pressure–velocity

coupling is achieved using the well-known semi-implicit
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FIGURE 4 The comparison of the maximum and minimum axial
velocity (U/c ) predicted by present computation and analytical result
with a ¼ 0:01 and Re ¼ 0:01:
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FIGURE 5 Comparison of computed results with theoretical results on
the pressure gradient distribution for Re ¼ 0:01; a ¼ 0:01; and
�Q=pch 2 ¼ 0 (a) f ¼ 0:2 (b) f ¼ 0:7:

Re=0.01
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FIGURE 6 The effect of Reynolds number on the streamline patterns in
the wave frame for a ¼ 0:01; w ¼ 0:7; �Q=pch 2 ¼ 0:6:
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FIGURE 7 Grid dependence studies on three set of grids.
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pressure linked explicit algorithm (SIMPLE) of Patankar

and Spalding (1972). Special care is required for using a

collocated variable arrangement to avoid pressure–

velocity decoupling.

The computational procedure for the implementation of

inflow and outflow boundary conditions is outlined as

follows. At the initial stage of the iteration, prescribed

values are specified at the inlet (FA) whereas at the outflow

boundary (CD), derivatives of the properties with respect

to the stream-wise direction are set zero. The iterative

procedure is repeated until the mass residual source term

decreases and becomes sufficiently small (for example

less than 4% of the total mass). Then the periodic

boundary condition is implemented by replacing the field

data at the inlet (FA) with the computed solutions at the

pertinent position (BE) in each iteration step. Periodicity

is checked by comparing the computed data between the

outlet (CD) and the same position at the location (BE).

The computation is terminated when the periodicity in the

flow is attained and is determined by the criteria when the

mass residual source became much less than 1% of the

total mass and also by observing the flow behavior.

-6

-5

-4

-3

-2

-1

0

1

2

0 0.2 0.4 0.6 0.8                    1

ϕϕϕϕ

(U/c)max
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FIGURE 8 The effect of Reynolds number on the (U/c )max of the axis
for a ¼ 0:01; �Q=pch 2 ¼ 0 and different values of w.

FIGURE 9(a) The effect of Reynolds number on the streamline patterns in the wave frame and laboratory frame for a ¼ 0:01; �Q=pch 2 ¼ 0: w ¼ 0:2.
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RESULTS AND DISCUSSIONS

A couple of standard test problems are simulated for the

purpose of verifying the numerical algorithm. The first

problem considered here is the peristaltic flow through a

two-dimensional axi-symmetric tube under the flow

condition of Re ¼ 0:01; and a ¼ 0:01 which is used to

simulate the inertial free, long wavelength flow (i.e. Re !

0; a ! 0). The calculated maximum and minimum

velocity at the crest and trough at the axis are compared

with the theoretical results of Shapiro et al. (1969) in Fig.

4. In Fig. 5(a) and (b), the pressure gradient distribution

for the wave amplitude w ¼ 0:2 and 0.7 are displayed

together with Shapiro et al. (1969)’s results. It is clear

from both figures that the present results are in good

agreement with the theoretical results. Hence it is

confirmed that the present code is valid with the flow

condition of Re ¼ 0:01; and a ¼ 0:01:
The second problem considered here is the finite

Reynolds number case. Figure 6 shows the computed

streamlines corresponding to w ¼ 0:7; �Q=pch2 ¼ 0:6;
and with the Reynolds number varying in the range

from 0.01 to 2. The comparison with the numerical

results of Takabatake et al. (1988) shows a fairly good

agreement.

In order to assess the effects of grid dependence on the

numerical solution, computations are conducted on three

sets of grids, i.e. 20 £ 17; 36 £ 22; and 46 £ 32 cell

meshes. Figure 7 compares the computed normalized wall

shear stress variation in the axial direction obtained by

using the numerical method on these three grids and shows

the effect of grid size on the computed results. As the

differences are negligible between the results computed on

the grids of size 36 £ 22 and 46 £ 32; most of the

computations reported from this point onwards are done

using the 36 £ 22 grid size. Computational studies

pertaining to the influence of Reynolds number and non-

dimensional wavelength a on the flow field, pressure

distribution and shear stress distribution along the wall are

presented first based on the mean flow rate �Q=pch2 ¼ 0

FIGURE 9(b) The effect of Reynolds number on the streamline patterns in the wave frame and laboratory frame for a ¼ 0:01; �Q=pch 2 ¼ 0: w ¼ 0:7:

Re=0.0

Re=1.0

Re=10

Re=100

Laboratory Frame Wave Frame

1
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and followed by the computational studies focusing on the

effect of Re and a on the fluid “trapping” phenomena.

Flow Structure, Pressure, Shear Stress Distribution for
�Q=pch2 5 0

Reynolds Number Effect Corresponding the Case when
a 5 0:01

Here computational results pertaining to the Reynolds

number effect on the flow structure will be presented for

the case corresponding to the geometric condition of a ¼

0:01: Figure 8 shows the variation of the maximum

normalized axial velocity ðU=cÞmax in the laboratory frame

with w for the range of Re ¼ 0:01–10; �Q=pch2 ¼ 0 and

a ¼ 0:01: The corresponding results from the simplified

analytical studies of Shapiro et al. (1969) evaluated for the

low Re ¼ 0:01 are also shown on this graph for

comparison purposes. It can be seen from Fig. 8 that for

the range of Re ¼ 0:01–0:1; the present computed results

based on the complete numerical model are in good

agreement with the theoretical results of Shapiro et al.

(1969) for the flow condition as Re ! 0; a ! 0: This

phenomena implies that within the range of 0:01 # Re #

0:1; the Reynolds number effect (or the inertial force

effect) on the ðU=cÞmax can be ignored within the limits of

the numerical error associated with the numerical

approximation. The effect of further increases in Re on

the variation of maximum axial velocity with respect to w

can be seen from this figure as well. Figure 8 shows that

for w , 0:3; (U/c )max increases with w for all the Re under

investigation (0.01–10). However, when w is increased

beyond 0.3, (U/c )max for Re ¼ 10 starts to decrease

sharply with w. A similar variation can be observed for

Re ¼ 1:0 with a delayed turning point at around w ¼ 0:4
where the decreasing trend starts.

Figure 9(a) and (b) shows the variation of the computed

streamlines with the Reynolds number in both the wave

frame and laboratory frame for a ¼ 0:01; �Q=pch 2 ¼ 0;
w ¼ 0:2 and w ¼ 0:7; respectively. By comparing these

two figures, the influence of Reynolds number on the flow

structure can be observed and the effect is felt more for the

case corresponding to w ¼ 0:7 than for the case

corresponding to w ¼ 0:2: This result implies that the
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FIGURE 10 The effect of Reynolds number on the velocity profiles in
the laboratory frame for w ¼ 0:2; a ¼ 0:01 and �Q=pch 2 ¼ 0: (a) wave
crest (b) wave trough.
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FIGURE 11 The effect of Reynolds number on the velocity profiles at
wave trough in the laboratory frame. w ¼ 0:7; a ¼ 0:01 and �Q=pch 2 ¼
0:
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inertial force effect on the peristaltic flow is stronger for

the case with a larger amplitude ratio.

In order to understand more details of the computed

velocity fields, the variation of the velocity profiles in the

tube at the crest and trough (in the laboratory frame) with

the Reynolds number are shown, respectively, in Fig. 10(a)

and (b) for w ¼ 0:2: The corresponding variation of the

velocity profiles in the tube at the wave trough for w ¼ 0:7
are shown in Fig. 11. In these figures, the ordinate is the

dimensionless coordinate r/h while the abscissa is U/c

defined in the laboratory frame. It can be seen that, in the

range of 0:01 , Re , 0:1; both the velocity profiles at the

crest and trough are nearly parabolic, which is in

agreement with the asymptotic solution obtained by

Shapiro et al. (1969) for Re ! 0; a ! 1: On the other

hand, when the Reynolds number increases to Re ¼ 1:0
for w ¼ 0:7 and Re ¼ 10 for w ¼ 0:2; the velocity profile

deviates from the parabolic shape and hence implies the

existence of flow separation with the reversed velocity.

Figure 12(a) and (b) shows the Reynolds number effect

on the normalized non-dimensional pressure distribution

corresponding to flow cases where the amplitude ratio

w ¼ 0:2 and 0.7, respectively, and for which �Q=pch 2 ¼ 0:
It can be seen that the amplitude ratio has a strong effect

on the pressure distribution. For w ¼ 0:7; the pressure

distribution remains a constant in the central part of one

wavelength (i.e. 0:2 , z=l , 0:8) with the sudden rise in

�p near the two boundaries of the wave cycle. However, for

w ¼ 0:2; the pressure distribution varies with the z=l
during the whole wave cycle, and as Reynolds number

increases the maximum non-dimensional pressure

approaches the middle point of the wave cycle, i.e. z=l ¼
0:5: One possible explanation is that for the large

amplitude ratio, the difference in velocity between the

central and two ends (z=l ¼ 0; and 1.0) is larger than the

FIGURE 12 The effect of Reynolds number on the normalized pressure
distribution for a ¼ 0:01 and �Q=pch 2 ¼ 0: (a) w ¼ 0:2 (b) w ¼ 0:7:

FIGURE 13 The effect of Reynolds number on the shear stress
distribution for a ¼ 0:01 and �Q=pch 2 ¼ 0: (a) w ¼ 0:2 (b) w ¼ 0:7:
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corresponding small amplitude ratio, which results in the

sudden pressure variation taking place at the locations of

the two ends of the wave cycle.

The variation of the non-dimensional shear stress ðt=tmaxÞ

distribution along the peristaltic wall corresponding to

the two cases w ¼ 0:2 and 0.7 are shown, respectively, in

Fig. 13(a) and (b). It can be seen that for the range of

Reynolds number Re from 0.01 to 1.0, the Reynolds

number effect on the shear stress distribution is small for

both cases although the variation of shear stress is much

sharper for w ¼ 0:2 than w ¼ 0:7: Both figures show a

symmetric feature about the midsection. In contrast,

when the Reynolds number is increased further to Re ¼

10 and 100, the symmetric feature is broken for w ¼ 0:2;
and the location for the minimum shear stress moves

downstream. For w ¼ 0:7; although the symmetric is

maintained for the entire range, two locations for

minimum shear stress appear around z=l ¼ 0:2 and 0.9.

Figure 14 shows the Reynolds number effect on the

relationship between the dimensionless pressure rise for

zero flow rate ð �Q=pch 2 ¼ 0Þ and the non-dimensional

wave amplitude for a ¼ 0:01 predicted by the compu-

tational model and compared with analytical results of

Shapiro et al. (1969) with a ! 0 and Re ! 0: It can be

seen that the results agree well. The figure also shows the

Reynolds number effect on the rise of the dimensionless

pressure as Reynolds number is increased while keeping w

fixed.

FIGURE 14 The effect of Reynolds number on the dimensionless
pressure rise and dimensionless wave amplitude wða ¼ 0:01Þ:

FIGURE 15 The effect of Reynolds number on the maximum axial
velocity for different a. (a) w ¼ 0:2 (b) w ¼ 0:4:

FIGURE 16 The effect of a on the pressure distribution for w ¼ 0:2: (a)
Re ¼ 0:01; (b) Re ¼ 1:0:
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Reynolds Number Effect Corresponding to the Case
when a @ 0:01

In order to investigate the Reynolds number effect on the

flow structure by relaxing the assumption of a ¼ 0:01;
computations for cases when a ¼ 0:1; 0.2 and 0.4 are

done. The computed results show that, for a less than 0.1,

there are no significant variations or differences in the

above distribution of the velocity field, pressure field and

shear stress field. However, differences start to show when

a @ 0:01:
The Reynolds number effect on the maximum axial

velocity in the laboratory frame for different values a @

0:01 corresponding to w ¼ 0:2; and w ¼ 0:4 are shown in

Fig. 15(a) and (b), respectively. It can be seen from both

figures that the variation of the maximum axial velocity

ðU=cÞmax with Reynolds number show a similar trend.

When Re , 1:0; (U/c )max remains a constant (which is a

function of a ) irrespective of the Reynolds number.

However, when Re . 1:0; (U/c )max decreases with

Reynolds number. The difference between Fig. 16(a)

and (b)lies in the magnitude of ðU=cÞmax; i.e. the absolute

value of ðU=cÞmax for the case when w ¼ 0:4 is larger than

the corresponding values for the case when w ¼ 0:2:

Regarding the effect of variation in a on the value of

(U/c )max, both figures show the decrease of (U/c )max with

a at the same Reynolds number.

Figure 16(a) and (b) shows the non-dimensional

wavelength a effect on the pressure distribution along

the wall for amplitude ratio w ¼ 0:2 at Re ¼ 0:01 and

Re ¼ 1:0; respectively. It can be seen from both figures

that, for a fixed Re, the variation in the pressure

distribution during one wavelength increases as a

increases. With regard to the Reynolds number effect on

the pressure distribution, Fig. 16(a) shows that it is nearly

symmetric about the central section (i.e. z=l ¼ 0:5) for

Re ¼ 0:01: However, this symmetric feature is broken for

Re ¼ 1:0 shown in Fig. 16(b). This implies that the

influence of inertial effects on the flow field increases with

the Reynolds number.

The effect of the non-dimensional wavelength a on the

shear stress distribution are shown in Fig. 17(a) and (b),

FIGURE 17 The effect of a on the shear stress distribution for w ¼ 0:7
(a) Re ¼ 0:01; (b) Re ¼ 1:0:
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FIGURE 18 The streamline variation with �Q=pch 2 (in the wave frame)
for w ¼ 0:7; a ¼ 0:01; Re ¼ 0:01:
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respectively for Re ¼ 0:01 and 1.0 for the case when w ¼

0:7: It can be seen that for both Re ¼ 0:01 and Re ¼ 1:0;
as a increases the variation of shear stress, z=l becomes

more pronounced. For a given a, the variation in Reynolds

number also affects the shear stress distribution. As Re

increases the symmetric distribution which appear in Fig.

17(a) is broken in Fig. 17(b) for a $ 0:2:

Fluid Trapping in Peristaltic Flows

As computational studies discussed in the previous section

are based on the mean flow rate �Q=pch2 ¼ 0; in this

section computational results are presented and discussed

for the case when �Q=pch 2 – 0: It has been known that for

certain values of w and �Q=pch 2; a part of the fluid in the

tube is enclosed by a streamline separated from the axis in

the wave frame. The fluid moves forward with a net

velocity equal to the wave speed in the laboratory frame as

if it were trapped by the wave. This phenomenon is called

“trapping”. Previous studies on trapping in the circular

tube are based on the assumption of either infinite long

wavelength, i.e. a ! 0 (Takabatake et al., 1988; Shapiro

et al., 1969) or inertial free flow, i.e. Re ! 0 (Shapiro

et al., 1969). In the current study, the numerical

investigation is extended to larger non-dimensional

wavelength (i.e. a ¼ 0:2; 0.4) and for moderate Reynolds

number ð0:01 , Re , 10Þ: For clarification, purposed

focus will be made on the computational results obtained

for the case when w ¼ 0:7 will be presented.

Trapping Corresponding to Re 5 0:01

Figure 18 shows how the computed streamline flow

patterns vary with different values of �Q=pch 2 for the case

when w ¼ 0:7; a ¼ 0:01 and Re ¼ 0:01: It can be seen

that for this particular value of w, a and Re, there is a

“trapping” phenomena occurring for a wide range of mean

flow rate. ð0 # �Q=pch 2 # 1:0Þ: It can also be seen that the

size of the region of “trapping” increases as the value of
�Q=pch2 increases. In order to quantify this phenomena of

“trapping”, three non-dimensional parameters defined by

Takabatake et al. (1988), namely the two trapping lengths

ðLa=lÞ; ðLb=HmaxÞ; and the relative trapping intensity

jcmax=cwallj have been tracked during the course of the

computation. Figure 19 is a schematic showing the

significance of these parameters and how these are

estimated from the computed plots of streamline patterns

corresponding to flow trapping mechanism associated

with peristalsis. In order to track the relative trapping

intensity, the computed velocity fields are numerically

integrated to obtain estimates of the stream function

according to Eqs. (12) and (13). The effect of the variation

of �Q=pch 2 on these three parameters are shown in Fig.

20(a)–(c) for selected values of a ¼ 0:01; 0.2 and 0.4 and

for fixed Re ¼ 0:01: The computational results of

Takabatake et al. (1988) are superimposed for compari-

son. It can be seen that the present results are in good

agreement with the their corresponding results when
�Q=pch 2 less than 0.5 while for �Q=pch 2 . 0:5; results of

Takabatake et al. (1988) are slightly higher than those

computed by the present study. It also can be seen that the

values of all the three parameters, i.e. ðLa=lÞ; ðLb=HmaxÞ

and jcmax=cwallj increase with increasing values of
�Q=pch 2: The corresponding variation of the computed

streamlines for values of a ¼ 0:2 and 0.4 are shown in

Figs. 21 and 22, respectively, and by comparing Figs. 18,

21 and 22, it can be observed that the variation of flow

structure with mean flow rate is generally not influenced

by the value of a, i.e. trapping area is increased with
�Q=pch 2 for all three cases. However, detailed comparison

of Fig. 20(a)–(c) shows that there are significant

differences for different a. These figures show that

although the parameter ðLa=lÞ increases with �Q=pch 2 for

the three values of a, the value of ðLa=lÞ corresponding to

the same value of �Q=pch2 decreases with a. Moreover, it

can be seen that the values of ðLb=HmaxÞ exhibit no

significant differences for three values of a. This is clearly

reflected in the streamline figures that the size of the

trapping region in the z direction decreases with a, while

remaining relatively constant in the r direction. As can be

seen from Fig. 20(c), the relative intensity jcmax=cwallj

shows no significant differences for the three values of a,

when �Q=pch2 , 0:6; but shows an increasing trend with

a when �Q=pch2 . 0:6: Trapping phenomena can occur

only for certain combinations of �Q=pch 2 and a. Figure

23shows the variation of computed onset value of trapping

mean flow rate �Q=pch2 with a for w ¼ 0:7 and Re ¼

0:01: This figure basically shows the effect of a on the

FIGURE 19 A schematic drawing for definition of flow trapping mechanism in peristalsis.
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value of onset trapping mean flow rate. It is clear that as a

increases, the mean flow rate for the onset of trapping is

significantly increased.

Trapping Corresponding to Re > 0:01

In order to investigate the trapping phenomena further,

computations are done for higher Reynolds number, but

for the same value of w ¼ 0:7 by varying a. The Reynolds

number effect on �Q=pch 2 at which the trapping onset

takes place is shown in Fig. 24for a ¼ 0:01 and 0.2. It can

be seen that for a fixed a, the increase of Re leads to a

significant increase in �Q=pch2 which implies a delay in

the onset of trapping. Figure 24 also shows that for a ¼

0:01; there is a wide range of Re within which the trapping

could occur. For the case corresponding to a ¼ 0:2; the

FIGURE 20 (a)–(c) The effect of �Q=pch 2 on flow trapping mechanism
for different values of a with w ¼ 0:7; Re ¼ 0:01:
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FIGURE 21 The streamline variation with �Q=pch 2 (in the wave frame)
for the case when w ¼ 0:7; a ¼ 0:2; Re ¼ 0:01:
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corresponding Reynolds number range is considerably

decreased within 0.01–0.02 and for the case correspond-

ing to a ¼ 0:4; it can be seen that trapping only occurs at

Re ¼ 0:01:
The variation of computed streamlines in the wave-

frame with Reynolds number for the case corresponding to

w ¼ 0:7; �Q=pch2 ¼ 0:6; a ¼ 0:2 and a ¼ 0:4 are shown

in Figs. 25 and 26, respectively. have been tracked during

the course of the computation. The effect of the variation

of �Q=pch 2 on these three parameters trapping lengths

ðLa=lÞ; ðLb=HmaxÞ; and relative trapping intensity

jcmax=cwallj are quantitatively shown in Fig. 27(a)–(c).

By comparing these results with the results correspond-

ing to a ¼ 0:01 shown in Fig. 6, the variation of computed

streamlines show that for all the three cases, as Re

increases, the trapping range decreases gradually and

moves backward (in the direction of 2z ). Detailed

analysis of Fig. 27(a)–(c) show that for a given a, the

parameters ðLa=lÞ; ðLb=HmaxÞ and jcmax=cwallj remain

constant when Re , 0:1; but decreases sharply with Re

when Re . 0:1: This implies that with the increase of

intertial forces, the relative intensity of trapping decreases.

For the same Reynolds number, the parameters ðLa=lÞ;
ðLb=HmaxÞ and jcmax=cwallj decrease with a.

CONCLUSIONS

In this work, peristaltic flow in an axi-symmetric tube has

been simulated by solving the unsteady incompressible

Navier–Stokes equations in primitive variables by the

finite volume method. Compared with the previous

theoretical methods used to study the peristaltic, the

present method has no restrictions on the geometrical
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FIGURE 22 The streamline variation with �Q=pch 2 (in the wave frame)
for the case when w ¼ 0:7; a ¼ 0:4; Re ¼ 0:01:

FIGURE 23 The effect of a on the onset trapping mean flow rate
�Q=pch 2 for the case when w ¼ 0:7 and Re ¼ 0:01:

FIGURE 24 The effect of Reynolds number on the mean flow rate for
the onset of trapping for the case when w ¼ 0:7:
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FIGURE 25 The streamline variation with Reynolds number (in the
wave frame) for the case when w ¼ 0:7; a ¼ 0:2; and �Q=pch 2 ¼ 0:6:
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FIGURE 26 The streamline variation with Reynolds number (in the
wave frame) for the case when w ¼ 0:7; a ¼ 0:4; and �Q=pch 2 ¼ 0:6:
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shape of the walls (a, w ). The numerical method used here

has no restriction on the range of Reynolds number

defined for peristalsis and hence can be used to simulated

peristalsis for a much wider range of Reynolds number.

With regard to the flow trapping phenomena, which results

from peristalsis, the present study has also been extended

to a much wider range of wave numbers than those

reported in literature, and more quantitative results are

presented for the trapping. From the computed unsteady

peristaltic flow fields, systematic analysis of the effect of

Reynolds number and wavelength and wave amplitude on

the velocity fields, pressure and shear stress distribution

associated with peristalsis have also been extracted to

provide useful insight into the operation of the peristaltic

pump at higher Reynolds number.
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