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a b s t r a c t

Wells turbine concept depends on utilizing the oscillating air column generated over marine waves to
drive a turbine. As a matter of fact, previous researches on the performance analysis of such turbine were
based on the first law of thermodynamics only. Nonetheless, the actual useful energy loss cannot be
completely justified by the first law because it does not distinguish between the quantity and the quality
of energy. Therefore, the present work investigates the second law efficiency and entropy generation
characteristics around different blades that are used in Wells turbine under oscillating flow conditions.
The work is performed by using time-dependent CFD models of different NACA airfoils under sinusoidal
flow boundary conditions. Numerical investigations are carried out for the incompressible viscous flow
around the blades to obtain the entropy generation due to viscous dissipation. It is found that the value of
second law efficiency of the NACA0015 airfoil blade is higher by approximately 1.5% than the second law
efficiency of the NACA0012, NACA0020 and NACA0021 airfoils. Furthermore, it is found that the angle of
attack radically affects the second law efficiency and such effect is quantified for NACA0015 for angle of
attack ranging from �15� to 25�.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The major challenge facing oscillating water column systems is
to find efficient and economical means of converting oscillating
flow energy to unidirectional rotary motion, for driving electrical
generators. A novel resolution for such challenge is the Wells tur-
bine [1e4], see Fig. 1(a, b) due to its simple and efficient operation.
The Wells turbine has already been applied in practice to gain en-
ergy from marine waves. In the past two decades, experimental
research of Wells turbine has mainly focused on improving the
turbine performance with emphasis on the overall operational
characteristics. The airfoils sections that are used in Wells turbine
have been extensively investigated in aeronautical applications.
However, the operating conditions in Wells turbine are completely
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different from such of the aeronautical applications. In Wells tur-
bine, the rotor contains multiple blades, which are confined by a
shroud aiming at harnessing the flowmomentum to drive the rotor
with the maximum torque. The flow physics in such situations are
still having several issues to investigate; besides, the dynamical
complexity resulting from an oscillating water column driven by
random irregular marine waves.

Second law analysis of energy conversion systems has become
an important tool for optimization and development during the
past decade. In fact, the second law of thermodynamics is more
reliable than the first law of thermodynamics analysis due to the
limitation of the first law efficiency in a heat transfer engineering
systems as well as heat transfer, mass transfer, viscous dissipation,
etc. Moreover, the second law can be used as the sources of entropy
generation [5,6]. Consequently, This work utilizes time-dependent
numerical models of different NACA four-digit series blade profile
under oscillating flow conditions. Numerical investigations are
carried out for the flow around Wells turbine blades using sinu-
soidal wave boundary conditions to perform as realistic
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Nomenclature

A Cross-sectional area of cylinder (m2)
B Cord of cylinder (cm)
f cycle frequency (Hz)
FD In-line force acting on cylinder per unit length (gf)
KE Kinetic energy (W/K)
L Blade chord (m)
p Pressure field (Pa)
Sgen local entropy generation rate (W/m2K)
SG Global entropy generation rate (W/K)
Sij Mean strain rate
St Thermal entropy generation rate (W/m2K)

SV Viscous entropy generation rate (W/m2K)
To Reservoir temperature (K)
ui Reynolds averaged velocity component in i direction

(m/s)
V Instantaneous velocity (m/s)
Va highest speed of axial direction (m/s)
Vo Initial velocity for computation (m/s)
Wrev Reversible work
m Viscosity (Kg/ms)
mt Turbulent viscosity
r Density (Kg/m3)
sε, sk The turbulent Prandtl numbers for k and ε respectively
ð�ru0iu0 jÞReynolds stress tensor
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characterization as possible of the flow field upstream and down-
stream of the turbine during the passage of the wave. The
GouyeStodola theorem [7] has been used to compute the second
law efficiency from the results of the numerical simulations. This
theorem postulates the difference between reversible and actual
works in any thermodynamic system which is the entropy gener-
ation in such system, as discussed later in section 4. Such theorem is
the foundation for the entropy generation minimization method
proposed by Bejan [8] to optimize finite size thermodynamic
systems.
Fig. 1. a. An illustration of the principle of operation of OWC system, where the wave
motion is used to drive a turbine through the oscillation of air column b. Typical
structure of W-T rotor.
A thorough literature survey has revealed that the second law
analysis of the oscillating flow around wells turbine has not been
conducted before. However, this section briefly reviews the most
relevant studies to accentuate the scope of the present work. In a
number of previous studies, it is concluded that the delay of stall
onset contributes in improving Wells turbine performance. This
delay can be achieved by setting guide vanes on the hub near the
rotor [9].

As far as the running and starting characteristics of the Wells
turbine are concerned, Wells turbine with 3D guide vanes are supe-
rior to those with 2D guide vanes or without guide vanes [10,11].
Furthermore, the presence of end plates is investigated experimen-
tally and numerically by Refs. [12,13] where they conclude that the
Wells turbinewith endplates is superior to those of the originalWells
turbine (which was investigated also in this work) because the peak
efficiency and the stall margin increases by approximately 4% and its
characteristics are dependent on the size and position of end plate.

Three dimensional numerical simulations are performed by
Thakker et al. [14] in order to analyze the performance of a Wells
turbine with CA9 blade profile, a maximum efficiency of 70% is
obtained. Moreover, Kim et al. [15] uses numerical simulation to
study the effect of the blade sweep on the performance of a Wells
turbine using either NACA0020 or CA9 blade profiles. They were
found that the performance of the Wells turbines with NACA0020
and the CA9 blades are influenced by the blade sweep. As the op-
timum rotor shape for a NACA0020 blade, a blade sweep ratio 35%
is identified to deliver the optimum performance. In general, the
overall turbine performance for the NACA0020 is better than such
of the CA9, Also, Takao et al. [16], presents experimentally the
suitable choice the sweep ratio of 0.35 for the cases of CA9 and
HSIM 15-262123-1576. In another study [17], the characteristics of
a Wells turbine with NACA0021 constant chord blades are inves-
tigated. They find from the numerical results that the wakes behind
the turbine blades merge rigorously in the portion of radius ratio
from 0.45 to 1.0, which leads the turbine to stall.

One and two stage Wells turbines involving symmetric airfoils
and Non-Symmetric airfoils are investigated by Mohamed [18,19].
Numerical optimization procedure has been carried out to optimize
the performance of the turbine as a function of the non-
dimensional gap between the two rotors. It is leading to an
optimal value of the non-dimensional gap (The distance between
the two stages/the blade chord) near 0.85 when considering the
operating range. Moreover, the Evolutionary Algorithms are used to
estimate the optimum shapewith an increase of efficiency (by 2.1%)
and of tangential force coefficient (by 6%), compared to the stan-
dard NACA 2421, as well as the one-stage the optimum shape with
an increase of efficiency (by 1%) and of tangential force coefficient



Fig. 2. The computational domain showing the grid, boundary conditions and di-
mensions as a function of chord length (L).
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(by 11.3%), compared to the standard NACA0021.
On the other hand, the hysteretic characteristics of monoplane

and biplane have been studied in a number of studies [20e26]. The
objective of such works is mainly to investigate the aerodynamic
losses of Wells turbine. It is found that for the biplane, the hysteretic
behavior is similar to that of themonoplane at lower angles of attack,
but the hysteretic loop similar to the dynamic stall is observed at
higher angles of attack. Exergy analysis is performed using the nu-
merical simulation for steady state biplaneWells turbines [27]where
the upstream rotor has a design point second law efficiency of 82.3%
although the downstream rotor second law efficiency equals 60.7%.

Most of the researchers who have investigated the performance
of different airfoils design and different operational condition have
analyzed the problem using only the parameter of first law of
thermodynamic that lead to several contradicting conclusions that
can be observed, for example, in Ref. [28]. This shows that the use of
two twin rotors rotating in the opposite direction to each other is an
efficient means of recovering the swirl kinetic energy without the
use of guide vanes. On quite the opposite, a contra-rotating W-T
which is investigated in Refs. [29], it is found to have a lower effi-
ciency than a biplane or monoplaneW-Twith guide vanes. Another
example, we can observe this contradiction also in the comparison
between the performances of the Wells turbines in four different
kinds of blade profile (NACA0020; NACA0015; CA9; and HSIM 15-
262123-1576). Which, the blade profile of (NACA0020) have the
best performance according to the result of [16,30], but, according
to the result of [31] the blade profile of (NACA0015) achieve best
result. Finally, the rotor geometry preferred was the blade profile of
(CA9) according to the result of [32,33].

It is essential to look at the second law of thermodynamic to
form a deeper understanding, since it has shown very promising
result in many applications, like wind turbine in Refs. [34e38],
Radial Compressor Stage [39], pipe flow [40], thermal power plants
[6], and Rotating disk [5].

The objective of the present work is essentially to investigate the
entropy generation, due to viscous dissipation, around Wells tur-
bine airfoils in two-dimensional unsteady flow configurations. The
research aims to use the entropy generation due to viscous dissi-
pation around a Wells turbine blade as very sensitive judged
parameter on the turbine performance for any change in terms of
the operating condition (the flow Reynolds number up to 2.4 � 105

and the airfoil angle of attack from �15 to 25�), the blade design
(four different airfoils) and flow direction (sinusoidal wave with
compression and suction cycle). This work is limited to four airfoils
namely NACA0012, NACA0015, NACA0020 and NACA0021. These
airfoils are common to use in Wells turbine applications.

2. Mathematical model and numerical approach

The mathematical model consists of the governing equations of
turbulent incompressible unsteady flow in two-dimensional
generalized coordinates, which can be written in vector notations
as [41]:
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and turbulent flow is modeled using the Realizable k-e model,
Transport equation of turbulent kinetic energy (k)
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Specific dissipation rate equation is:
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where u is the

Reynolds averaged velocity vector. The present study adopts one
and two-equation turbulence models to close the Reynolds stress
term ð�ru0iu0jÞ of the RANS equation [42] as shown in the following
section. The transport equations of such models can be found in
turbulence modeling texts such as [43]. The second law of ther-
modynamic defines the net-work transfer rate _W as [8]:

_W ¼ Wrev � ToSgen (6)

It is possible to express the irreversible entropy generation in
terms of the derivatives of local flow quantities in the absence of
phase changes and chemical reactions. The two dissipative mech-
anisms in viscous flow are the strain-originated dissipation and the
thermal dissipation Which correspond to a viscous and a thermal
entropy generation respectively [39]. Thus, it can be written,

Sgen ¼ SV þ Sth (7)

In incompressible isothermal flow, such as the case in hand, the
thermal dissipation termvanishes. The local viscous irreversibilities
therefore can be expressed as:



Fig. 3. Computational grid near the wall of the airfoil.

Fig. 4. The sinusoidal wave boundary condition, which represent a regular oscillating water column.

A.S. Shehata et al. / Renewable Energy 86 (2016) 1123e11331126
SV ¼ m

To
f (8)

where f is the viscous dissipation term, that is expressed in two
dimensional Cartesian coordinates as [39]:
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and the global entropy generation rate is hence expressed as:

SG ¼ ∬
xy
SVdydx (10)

and finely the second law efficiency is defined as:

hS ¼
KE

KE þ SG
(11)

where

KE ¼ 1
2
V2 (12)

but the efficiency in first law of thermodynamics ( )is defined as:
Table 1
Specification of different grids used in the grid independence test.

Grid No. of cells First cell Growth rate Aspect ratio EquiAngle skew

A 112603 1 � 10�4 1.02 1.996 0.429
B 200017 1 � 10�5 1.015 2.466 0.475
C 312951 1 � 10�5 1.012 2.376 0.514
D 446889 1 � 10�6 1.01 2.551 0.513
hf ¼
Net Output

Total work Input
(13)

2.1. Numerical model details

The computational domain is discretized to Cartesian structured
finite volume cells using GAMBIT code. Drichlet boundary condi-
tions are applied on the domain for the solution of momentum and
continuity equations. The application of such boundary condition
types [21,44e46] matches the GreeneGauss cell based evaluation
Fig. 5. Pressure coefficient plotted on the normalized airfoil cord for different grid
resolutions.



a

b

Fig. 6. (a) Measured unsteady in-line force FD(angle of attack ¼ 0�) and FD calculated
from CFD for frequency 2 Hz. (b) Measured unsteady in-line force FD(angle of
attack ¼ 0�) and FD calculated from CFD for frequency 1 Hz.

a

b

Fig. 7. (a) the global entropy generation rate variation with different Reynolds's
number at accelerating flow in compression cycle for four different airfoils (b) the
global entropy generation rate variation with different Reynolds's number at acceler-
ating flow in suction cycle for four different airfoils.
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method for the gradient terms used in the solver (ANSYS FLUENT).
Numerous tests accounting for different interpolation schemes
used to compute cell face values of the flow field variables, the
variables of governing equation which are velocity and pressure, as
well as convergence tests have been undertaken. The second order
upwind interpolation scheme is used in this work because it yields
results which are approximately similar to such yielded by third
order MUSCL scheme in the present situation. It is also found that
the solution reaches convergence when the scaled residuals ap-
proaches 1 � 10�5. At such limit, the flow field variables holds
constant values with the application of consecutive iterations.
Fig. 2; show the dimensions of whole computational domain and
location of airfoil. Fig. 3 show the grid distribution near the wall of
the airfoil.

The axial flow of Wells Turbine is modeled as a sinusoidal wave
in this simulation. Therefore, Inlet boundary conditions are set to
change as time. In order to apply the inlet boundary condition, inlet
velocity with periodic function (see Fig. 4) is generated as follows.

V ¼ V0 þ Vaðsin 2 pftÞ (14)

where t is time period 6.7 s are set as one period in this simulation
considering to the literature survey [22,23,33]. Time step is set as
0.00009 s in order to satisfy CFL (Courant Friedrichs Lewy) [47]
condition equal to 1. the sinusoidal wave condition create various
Reynolds number up to 2.4 � 105 and this maximumvalue which is
taken from many references such as [13,18,20e23,25,48,49].
Regarding the angle of attack, it covers wide range of angles of
attack in both directions (positive and negative) but it doesn't need
more than this value because the stall condition [50].
2.2. Numerical model validation

In order to ensure that the numerical model is free from nu-
merical errors, several grids are tested to estimate the number of
grid cells required to establish a grid-independent test. Table 1
shows the specifications of different grids used in such test. Fig. 5
shows the pressure coefficient (Cp) distribution on the upper and
lower surfaces of the airfoil as computed by the four grids. Grid C
and D have the same result, but the latter one required less time. So,
Grid C is chosen to conduct the analysis presented hereafter.

Many turbulence models are used to model the oscillating flow
around the object in order to determine the model which gives the
best agreement with experimental data adopted from Ref. [51]. The
best result for S-A, k� u SST and the Realizable k� εmodel but the
latter one required less time [52]. As For the near-wall treatment in
both K-epsilon and S-Amodels have used the log law of thewall but
for k-omega models have used y plus less than one. This experi-
mental data for unsteady forces acting on a square cylinder in
oscillating flow with nonzero mean velocity are measured [51]
where the oscillating air flows are generated by a unique AC
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Fig. 8. (a) the global entropy generation rate variation with different Reynolds's
number at decelerating flow in compression cycle for four different airfoils. (b) The
global entropy generation rate with different Reynolds's number at decelerating flow
in suction cycle for four different airfoils.

Fig. 10. Comparisons between the global entropy generation rate during the sinusoidal
wave cycle for four different airfoils.
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servomotor wind tunnel. The generated velocity histories are
almost exact sinusoidal waves. The measured unsteady FD is
computed from the Morison equation for the in-line force acting on
the cylinder per unit length:
Fig. 9. The maximum value for the global entropy generation rate at compression and
suction cycle.
FD ¼ 1
2
rBCDjUjU þ rA~CD

_U (15)

where _U ¼ dU=dt and the non-dimensional coefficient ~CD is the
inertia coefficient of the unsteady in-line force. This non-
dimensional coefficient is evaluated depend on [53,54].

This data is the most experimental data that have available in-
formation for the sinusoidal flow condition to validate our work;
therefore, it is adopted in the following simulation cases. Fig. 6 (a),
(b) show an excellent agreement between measured drag force
from reference and calculated drag force from CFD at two different
frequency.
3. Results and discussion

3.1. Evaluation of the second law efficiency of different NACA
airfoils

The numerical simulations are used to obtain local entropy
viscosity predictions of the different airfoil sections. Fig. 7(a) and
(b) highlight the entropy behavior when a flow is accelerating in
compression and suction cycle. Consequently, the entropy genera-
tion ratio various with the Reynolds number at certain angle of
attack equal to 2�. The change of Reynolds number values is due to
using sinusoidal wave boundary conditions. At low values of Rey-
nolds number the stall condition occur at small value of angle of
attack [50]. Hence, 2� angle of attack is chosen to avoid the stall
condition.

The Reynolds number is calculated from equation (14). Other-
wise, the value of Reynolds number in this study can be controlled
by the value of velocity while keeping the other parameters
Fig. 11. Comparisons between second law efficiency during the compression and
suction wave cycle for four different airfoils.



Fig. 12. Comparisons between second law efficiency during the sinusoidal wave cycle
for four different airfoils.
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constant.

Re ¼ VLr
m

(16)

The Reynolds number has radical effect on the entropy gener-
ation. This is obvious in the accelerating flow in compression and
suction cycle in Fig. 7 (a, b), where Reynolds number increase from
6 � 104 to 1.2 � 105. As a result, the global entropy generation rate
Fig. 13. Contours of Exergy around the blade of NACA0015 for angle of attack 2� at different t
s, b) t ¼ 1.674 s and V ¼ 35.04 m/s, c) t ¼ 2.511 s and V ¼ 24.824 m/s, d) t ¼ 3.348 s and V ¼ 0.1
V ¼ �24.79 m/s, h) t ¼ 6.696 s and V ¼ �0.0913 m/s.
(i.e. integral) has increased correspondingly for more than two
folds of all airfoils. However, when Reynolds number has increased
further to 1.7 � 105 (2 � 105 for NACA0012 at compression cycle)
the global entropy generation rate exhibited unintuitive values
ranging from 50% less to 40% lower than the corresponding value at
Reynolds number equal to 1.2 � 105 for all airfoils. The reason
behind such phenomena can be attributed to the nonlinear
complexity of the viscous dissipation term (equation (9)) where
both the square of mean rate of strain and velocity divergence
contributes to the local viscous irreversibilities. This phenomenon
suggests that possible existence of critical Reynolds number at
which viscous irreversibility takes minimum values. At high Rey-
nolds number (greater than 2 � 105) the change in velocity value,
see equation (14), is smaller than low Reynolds number. Where, at
120000 Reynolds number the velocity equal to 17.5 m/s, then it
increases to 24.8 m/s at 170000 Reynolds number (41%increase
rate). After that, it reaches to 200000 Reynolds number with ve-
locity equal to 30.3 m/s (22%increase rate). On the other hand, at
high Reynolds number (230000) the velocity equal to 33.8 m/s (10%
increase rate). Then, at 240000 Reynolds number the velocity reach
to maximum value equal to 35.04 m/s (3%increase rate), see Fig. 4.
This leads to smaller change in flow field and entropy generation.
The last one was dependent on velocity analysis.
ime and different velocity along the sinusoidal wave, a) at t ¼ 0.837 s and V ¼ 24.778 m/
0565 m/s, e) t ¼ 4.185 s and V ¼ �24.7 m/s, f) t ¼ 5.022 s V ¼ �35 m/s, g) t ¼ 5.859 s and
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Fig. 14. (a) the global entropy generation rate variation with different Reynolds's at accelerating flow in compression cycle for NACA0015 airfoil with different angle of attack. (b)
The global entropy generation rate variations with different Reynolds's at decelerating flow in suction cycle for NACA0015 airfoil with different angle of attack.
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However, in Fig. 8 (a, b) for decelerating flow in compression
and suction cycle when Reynolds number, in Fig. 8 (a), is decreased
further to 1.2 � 105 the global entropy generation rate exhibited
unintuitive values ranging from 94% (NACA0021, NACA0020) less to
59% (NACA0015) and 15% for (NACA0012) higher than the corre-
sponding value at Reynolds number equal to 1.7 � 105. For decel-
erating flow in suction cycle the global entropy generation rate, at
Reynolds number equal to 1.2 � 105, exhibited unintuitive values
ranging from 135% (NACA0012) less to 83% (NACA0020) and 68%
(NACA0021, NACA0015) which is higher than the corresponding
Table 2
The direction for positive and negative value of angle of attack.

Angle of attack x component of velocity dire

�15 0.965926
�11 0.981627
�5 0.996195
0 1
2 0.999391
5 0.996195
8 0.990268
11 0.981627
15 0.965926
16 0.961262
17 0.956305
20 0.939693
25 0.906308
value at Reynolds number equal to 1.7 � 105. Then, when Reynolds
number is decreased further to aminimumvalue the global entropy
generation rate is decreased also to minimum value and not equal
to zero. From Figs. 7 and 8, at maximum Reynolds number, the
NACA0012 give lower entropy generation rate than other airfoil.
From Fig. 9, it is concluded that the NACA0015 give lower
maximum value for the global entropy generation rate than other
airfoil in both cycles. The NACA0015 airfoil section gives less
average value ranging from 20% less to 10% of the global entropy
generation rate during the sinusoidal wave cycle see Fig. 10. To
ction y component of velocity direction

�0.258819
�0.190809
�0.087156
0
0.0348995
0.087156
0.139173
0.190809
0.258819
0.275637
0.292372
0.342020
0.422618



Fig. 15. The global entropy generation rate during the sinusoidal wave cycle for
different angle of attack. The dotted line indicates a fitting with a Gaussian distribution
function.

Fig. 16. Second low efficiency during the sinusoidal wave cycle for different angle of
attack.
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confirm these results we have made a comparison between the
second law efficiency for four different airfoils at compression and
suction cycle (Fig.11) and also for the total average efficiency during
the sinusoidal wave cycle (Fig. 12), NACA0015 gives best efficiency
when it is compared with other airfoils in both compression and
suction cycle and therefore in total sinusoidal wave cycle ranging
from 2% less to 1%. In four different airfoils and at certain angle of
attack, the efficiency for compression cycle higher than suction
cycle ranging from 1% less to 0.3%.

Equation (17) is defining the exergy value, which can be written
as:

Exergy ¼ KE þ SG (17)

Contours of Exergy around the blade of NACA0015 for angle of
attack 2� at different time and different velocity along the sinu-
soidal wave can be seen in fig. 13 that the positive value of velocity
refers to compression cycle and the negative value refers to suction
cycle. From this figure it can be observed that as the velocity in-
crease the value of exergy around the blade increase, otherwise, the
leading and trailing edge always have the lowest value, but at
compression cycle the area around the trailing edge has lower value
than the leading edge, and in the suction cycle the area around the
leading edge has lower value than trailing one.
Fig. 17. Comparisons between second law efficiency during the compression and
suction wave cycle for different angle of attack.
3.2. Effect of the angle of attack on entropy generation

The increase of angle of attack has a direct effect to the entropy
generation in the flow over the airfoil which is similar to the effect
of Reynolds number. However, as shown in Fig. 14(a) and (b),
NACA0015 airfoil has a different entropy generation signature for
different angles of attack listed in Table 2. For accelerating flow in
compression cycle, Fig. 14 (a) at Reynolds number equal to 1.2� 105

the maximumvalue of global entropy generation rate occurs due to
2� angle of attack but the minimum value of it occurs due to �15�

angle of attack. The 17� angle of attack gives maximum global en-
tropy generation rate at 1.7 � 105 Reynolds number, and the min-
imum value occurs due to �11� at the same Reynolds number.
Finally, at Reynolds number equal to 2.3 � 105 and 2.4 � 105 the
maximum global entropy generation rate occurs due to 17� and the
minimum value occurs due to 5�.

The trend of global entropy generation rate at suction cycle is
different from the compression cycle at various angles which can be
seen in Fig. 14 (b). For decelerating flow in suction cycle at Reynolds
number equal to 1.7� 105, themaximum global entropy generation
rate occurs at 5� angle of attack and the minimum value occurs due
to 25�. For Reynolds number equal to 1.2� 105 themaximum global
entropy generation rate occurs due to 2� angle of attack and the
minimum value due to 25�. Low angles of attack around zero, both
positive and negative direction have higher global entropy gener-
ation rate and lower entropy efficiency except at 17� so we can note
that there is unexpected increase in the value of global entropy
generation rate accompanied by a lack of the second law efficiency,
see Figs. 15 and 16. As For angle of attack from�5 to 5� the entropy
efficiency for compression cycle higher than the suction cycle, but
when the angle of attack increase in both directions the efficiency
for suction cycle exceeds the compression cycle, see Fig. 17. At same
angle of attack but in different direction, the positive direction gives
higher efficiency than the negative one. For example, the second
law efficiency for 5� higher approximately 0.5% than �5� and
approximately 0.1% between 11 and �11� and finally 0.3% between
15 and �15�.
4. Conclusions

Second law analysis of Wells turbine requires accurate estima-
tion of flow irreversibilities around the turbine blades. Two-
dimensional incompressible unsteady flow simulations of
different airfoils reveals that the geometry and the operating con-
ditions have radical effects on the global entropy generation rate in
the flow around turbine airfoil. The main conclusions are summa-
rized as follows.
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1 The relationship between the Reynolds number and the global
entropy generation rate haven't a direct correlation but when
compare between four airfoils at certain angle of attack the
maximum global entropy generation rate occurs at Reynolds
number of 1.2 � 105 and at 1.7 � 105 (2 � 105 for NACA0012 in
compression cycle) less than halved.

2 NACA0015 gives less global entropy generation rate and higher
efficiency compare with other airfoil.

3 The efficiency for four different airfoils in compression cycle is
higher than suction cycle at 2� angle of attack. But when the
angle of attack increase, the efficiency for suction cycle increase
also more than the compression one.

4 At zero and low angle of attack we have higher global entropy
generation rate than at high angle of attack.

5 From the study of the behavior of four different airfoils,
NACA0015 isn't the best airfoil in all condition. For examples, at
maximum Reynolds number NACA0012 gives less global en-
tropy generation rate and NACA0020 create the minimumvalue,
so it is a good concept to create an optimum design airfoil gives
better result than NACA0015.

6 In general the global entropy generation rate due to viscous
dissipation is a very sensitive indicator for airfoils behavior at
any change in design parameters, the operating condition and
also being affected by flow direction.
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