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a b s t r a c t

Research on fish locomotion has made extensive progress towards a better understand-
ing of how fish control their flexible body and fin for propulsion and maneuvering.
Although the biologically flexible fish fins are believed to be one of the most important
features to achieve optimal swimming performance, due to the limitations of the
existing numerical modeling tool, studies on a deformable fin with a non-uniformly
distributed stiffness are rare. In this work, we present a fully coupled fluid–structure
interaction solver which can cope with the dynamic interplay between flexible aquatic
animal and the ambient medium. In this tool, the fluid is resolved by solving Navier–
Stokes equations based on the finite volume method with a multi-block grid system.
The solid dynamics is solved by a nonlinear finite element method. A sophisticated
improved IQN-ILS coupling algorithm is employed to stabilize solution and accelerate
convergence. To demonstrate the capability of the developed Fluid–Structure-Interaction
solver, we investigated the effect of five different stiffness distributions on the propulsive
performance of a caudal peduncle-fin model. It is shown that with a non-uniformly
distributed stiffness along the surface of the caudal fin, we are able to replicate similar
real fish fin deformation. Consistent with the experimental observations, our numerical
results also indicate that the fin with a cupping stiffness profile generates the largest
thrust and efficiency whereas a heterocercal flexible fin yields the least propulsion
performance but has the best maneuverability.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Fluid–structure interaction (FSI) is a common phenomenon in nature, in which the structure is subjected to the motion
induced by the unsteady fluid forces, and in return, the flow around the structure is also affected by the structural
response. Many engineering problems involve FSI phenomena, such as their applications in aerospace, ocean engineering,
biomedical and civil engineering etc. One specific application in ocean engineering is the bio-inspired autonomous
underwater vehicle (AUV) and robot. The advantages of such AUVs over the conventional vehicles which use rotational
propellers are their low noise generation, the excellent maneuverability and high propulsion efficiency at low-speed
cruising (Reddy et al., 2018). The studies on the aquatic animal swimming mechanism have provided scientific insights
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for the design of those bio-inspired AUVs. Among various features of different swimmer locomotion, one of the most
important features is its flexible body and/or caudal and pectoral fins interaction with the aquatic environment (Flammang
and Lauder, 2008). The common flow features shared by such flexible swimmers are their complex three-dimensional and
time-dependent structure deformation, leading to the intrinsic complexity of their surrounded fluid flow (Tian et al., 2014).

In the past studies, to understand the fundamental locomotion mechanism of the aquatic animals, the flexible fish fin
or body were usually simplified as rigid models (Dong et al., 2006; Triantafyllou et al., 1993). More recently, some studies
have investigated the flexible propulsors and their propulsion performance, which can be improved as compared to a
rigid model. However, the so-called ‘‘flexibility’’ in these studies refers to a mathematically pre-defined fin deformation
by reconstructing the realistic kinematics observed/recorded from the live fish experiment (Bozkurttas et al., 2009; Kern
and Koumoutsakos, 2006; Wolfgang et al., 1999). Therefore, only the hydrodynamics response to the designated structure
deformation was examined, whereas the effect of resultant fluid forces on the flexible fins was neglected.

On the other hand, recent anatomical studies indicated that fishes are characterized by a composite structure (Puri
et al., 2018; Youngerman et al., 2014) instead of being made of uniform material as simplified in the previous studies
(Dai et al., 2012b; Heathcote and Gursul, 2007; Yeh and Alexeev, 2016). The aforementioned simplifications may pose a
significant impact on their predicted propulsion performance, which was proved by the studies (Shoele and Zhu, 2010,
2012), where the strengthened leading edge of fish pectoral fins achieved a higher propulsion efficiency as compared
to a fin with uniformly distributed stiffness. This composite biological structure is also believed to be able to achieve
an effective active and/or passive structure deformation pattern with multiple degrees of freedom, which could further
result in the complex variations of fish’s conformations during its maneuvering locomotion (Flammang and Lauder, 2008).
A recent study by Flammang and Lauder (2009) found five movement patterns from the recorded three-dimensional
kinematic data and high-speed video of a live bluegill sunfish caudal fin, and they were given the names of flat, cupping,
W-shape, undulation and rolling motion respectively. It was illustrated that the curvature configurations contribute to
fish’s maneuvering behavior, e.g., a W-shape mode involves the kicking maneuvering. A similar phenomenon has also
been observed by Youngerman et al. (2014) in a study of free-swimming ghost knifefish.

Generally, experimental and numerical modeling are the two approaches to elucidate the underlying mechanism
of FSI phenomenon involving the flexible deformation of aquatic animals (Li et al., 2018). The experimental approach
often investigates fish and fins locomotion through the observation of live fish and the measurement of their movement
patterns, gait and elastic biological material properties (Alben et al., 2007; Flammang and Lauder, 2008; Kancharala
and Philen, 2016; Taft and Taft, 2012). The obtained quantitative results manifested that the flexible fin shows a
non-monotonous dependence of the bending rigidity along the proximal–distal axis.

The above studies with live fish experiment have some limitations due to the difficulties to control real fish and the
other real-time experimental measurements (Lauder, 2015). An alternative way is to use a bio-inspired robotic fish to
replicate the main features of a real fish. For example, four passively-flexing fish-like foil models were designed by Lucas
et al. (2015) to examine the effects of foil non-uniform stiffness on the swimming performance. Their results indicated
that the two foils with anterior regions of high stiffness and posterior regions of low stiffness outperform the foils with
uniform distribution of flexibility in terms of self-propelled speeds and thrust production. In the study of Kancharala and
Philen (2016), the stiffness profiles of a real fish fin were measured by using digital image correlation (DIC) techniques.
With those experimental extracted data, a robotic fin with a chordwise variation of stiffness was fabricated to study
the locomotion performance in a water tunnel. Similar to the observations achieved by Lucas et al. (2015), their results
showed that the fins with varying stiffness generated larger thrusts and higher efficiency compared to the uniform ones.
This conclusion is reinforced by a recent publication by Reddy et al. (2018) on a flat plate fin with trapezoidal geometry.

Although in the above-mentioned experiments, biomimetic models can be constructed with different physical material,
they are still subjected to the availability of material diversity for conducting a systematic parametric study. Additionally,
some key hydrodynamics parameters (e.g., surface force and structural stress of fish) remain less known in an exper-
imental work. To compensate for these weaknesses associated with experiment testing, numerical simulation plays a
role in presenting holographic flow information, as it enables to answer ‘‘what if’’ type questions, which makes it more
attractive in comparison with experimental studies. Especially thanks to the high-performance computation and high-
fidelity numerical techniques, computational modeling becomes an indispensable approach along with experiments in
biomimetic research.

With some sophisticated simulation modeling, a few researchers have conducted numerical studies on flexible fish fin.
A series of work has been done by Zhu and Shoele (2008). In their early work, a fully coupled fluid–structure interaction
tool was developed which combined a nonlinear Euler–Bernoulli beam model and a boundary-integral hydrodynamics
model. The tool was then used to investigate fish pectoral fin during labriform swimming. Two different flexible fins
were considered, i.e., one with monotonous structural properties while another with a leading edge rigidity strengthened.
They found that the fin strengthening enhanced the performance by reducing the effective angle of attack as well as
decreasing the power expenditure (Shoele and Zhu, 2010). Due to the limitations of their hydrodynamics model derived
from a potential flow theory, their studies failed to resolve the complicated flow separation and fin vortex evolution, while
such phenomena often dominate in fish swimming and thus has a significant impact on the performance estimation. A
recent improvement was made using the immersed boundary method (IBM) to take into account the viscous effect (Shoele
and Zhu, 2012, 2013). Nonetheless, these models are all two-dimensional. Tian et al. (2014) coupled a three-dimensional
viscous fluid solver with a nonlinear finite-element solid-mechanics solver and applied this to the simulations of the
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aerodynamics of the flexible flapping wings and the flow-induced vocal fold vibration. These case studies demonstrated
the versatility of this method. Nevertheless, the advanced, efficient and accurate FSI solvers are still very few.

In this study, we proposed a fully coupled FSI model to tackle the aforementioned FSI challenges for a three-
dimensional passively deformed fish fin with a non-uniform distribution stiffness along the fin surface. Within this
coupling framework, the hydrodynamics around the fin is simulated by solving unsteady Navier–Stokes equations with
a cell-centered finite-volume method (Liu et al., 2016), while its structural mechanics is resolved using a finite element
code CalculiX (Dhondt, 2004). These two solvers are implicitly coupled in a partitioned approach via preCICE (Bungartz
et al., 2016). Although FSI studies on underwater flexible bodies are not scarce, the existing FSI models are often limited
to simple structural mechanics, such as either 2D problems or linear elasticity. Distinct from those methods, with a
finite element method and abundant elements types, the present structure solver is able to analyze a much wider
range of nonlinear structures which may involve complex material behaviors along with large displacement and complex
deformation. Additionally, thanks to the sophisticated and robust coupling algorithms implemented in preCICE, this new
FSI solver enables to model strong coupling interaction between fish fin and its immersed aquatic environment more
efficiently. For example, an elaborate coupling algorithm, the Interface Quasi-Newton Inverse Least Squares method (IQN-
ILS) (Degroote et al., 2009; Haelterman et al., 2016; Mehl et al., 2016), is applied in this work to stabilize solution and
accelerate convergence, which is rare in most of existing partitioned coupling models in biomimetic studies.

By applying the developed fully coupled FSI solver, we focus on the study of a caudal fin with complex variations of
flexural rigidity in this work. It is inspired by the experimental study by Esposito et al. (2012) and a recent numerical
study by Zhu and Bi (2017). They both investigated the propulsion performance of a caudal fin involving its non-uniform
stiffness and complex deformation patterns. In the study of Zhu and Bi (2017), they employed a boundary-element method
for the hydrodynamic analysis, where the vortices shed from the fin and viscous shear layer were ignored, which may
lead to the loss of accuracy. Moreover, the fin surface was modeled as a simplified linear spring, and therefore, the
deformation of their predicted flexible fin surface appeared not smooth, inconsistent with the smooth curvature fashion
observed from real fish. It should also be mentioned that the viscous effect and vorticity shedding from the locations,
which is not limited to the trailing edge were also considered in our recent paper (Shi et al., 2019). However, the model
was geometrically simplified as a rectangular plate composed of several flexural rays connected by linear springs. Thus,
a continuously passive deformation of the flexible fin was not well replicated. In this work, we will demonstrate the
robustness of the developed FSI tool by solving some generalized FSI problems and then take a flexible fish fin as an
example of application. It will serve as a framework for the future bio-inspired studies involving active and passive control
associated with complex structural material.

The remainder of this paper is organized as follows: the geometry, structural properties and kinematics of the flexible
caudal peduncle-fin model is introduced in Section 2. We also define the performance metrics in this section. In the
next section, the governing equations of fluids and solids are presented. Section 4 presents the numerical approaches
used to solve the fluid–structure coupled problem. In Section 5, several validations are conducted and sensitivity studies
are demonstrated. The results of the numerical studies are presented in Section 6. Finally, the conclusions are drawn in
Section 7.

2. Problem formulations

The current peduncle and caudal fin model is inspired by the experiment test conducted by Esposito et al. (2012),
where a robotic fish tail mimicking the locomotion of the Bluegill Sunfish (Lepomis macrochrus) has been experimentally
examined. In their experiment, the robot consists of a rigid peduncle and a flexible caudal fin, and more details for the
experimental setup can be found in Esposito et al. (2012).

However, it is worthwhile to note that the current study does not attempt to duplicate the real fish in terms of its
lifelike geometry or material features in-vivo. Instead, like the studies by Esposito et al. (2012) and Zhu and Bi (2017), we
focus on some main characteristics, e.g., anisotropic flexibility and associated fluid–structure interplay, extracted from a
real fish fin. Fig. 1 illustrates the geometry and dimensions of the peduncle and caudal fin model. The thickness h of the
model is 0.02 c, where c is the chord length of the fin at the midline. All the edges are chamfered to ease our CFD mesh
generation.

The kinematics of the present model is described as follows. The peduncle combined with the caudal fin rotate
harmonically around the z-axis with the reference point O in a uniform flow in the positive x-direction with a velocity of
U∞. The time-dependent pitch motion of the model is described by θ (t) = θm sin (2π ft), where θm is the peak amplitude
and f denotes the oscillating frequency.

The dimensionless parameters are defined as: the Reynolds number Re = U∞c/ν; mass ratio m∗
= ρsh/ρf c; the

reduced frequency f ∗
= fc/U∞; the Poisson ratio the νs; dimensionless stiffness K = EI/

(
ρfU2

∞
c3
)
, where E denotes

Young’s modulus, I = h3/12 is the area moment of inertia of the cross section.

2.1. Structural model of the caudal fin — the complex variations of stiffness

Structurally, this fin is composed of 19 segments (typically, the number of rays of a real fish fin ranges from 10 to 20,
Westneat et al., 2004), as shown in Fig. 2(a). To replicate various fin deformation patterns observed in Esposito et al. (2012)
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Fig. 1. Illustration of the fish caudal peduncle-fin model (a) and xz view of the model and dimensions (b).

Fig. 2. The generated structural meshes of the fin with 19 segments in different colors (a) and the distribution patterns of stiffness (b).

and Zhu and Bi (2017), each segment is assigned with a unique K, i.e., for ith segment, the normalized flexural rigidity is
Ki = EiI/ρfU2

∞
c3 (i = 1,. . . , N), where N = 19. Five variation patterns of K corresponding to different deformation fashions

are considered in this work:
1. Uniform distribution: Ki = Kc
2. Cupping distribution: Ki = KcRi/R, where Ri = 1 + γ

[
1 − sin π(i−1)

N−1

]
.

3. Reverse cupping distribution: Ki = KcRi/R, where Ri = 1 + γ sin π(i−1)
N−1

4. W-shape distribution: Ki = KcRi/R, where Ri = 1 + γ
[
1 −

⏐⏐sin 2π(i−1)
N−1

⏐⏐]
5. Heterocercal distribution: Ki = KcRi/R, where Ri = 1 + γ

[
1 − sin

(
π |i−N|

2(N−1)

)]
Here, R =

1
N

∑N
i=1 Ri, and Kc is a constant and used to quantify the mean flexibility of all the fin segments. The ratio

of the stiffness between the least flexible segment and the most flexible one is determined by the parameter γ . In this
simulation, γ = 10 is selected. The variations pattern of flexural rigidity is demonstrated in Fig. 2(b).

2.2. Performance metrics

To evaluate the propulsion performance of the caudal fin, the instantaneous thrust and power expenditure coefficients
are defined as

CT = −
Fx

1
2ρfU2

∞
S
, CP = −

MOθ̇
1
2ρfU3

∞
S
, (1)

where Fx is the total hydrodynamic forces on the caudal fin in the x-direction, S is the reference area, i.e., the area of the
fin in xz plane, MO represents the z-component of the reaction moment at point O. Meanwhile, the lateral force is defined
as the hydrodynamic forces in the y-direction, as well as lift force in the z-direction

Cy =
Fy

1
2ρfU2S

, Cz =
Fz

1
2ρfU2S

. (2)
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The propulsion efficiency η is given by

η =
CT

CP
, (3)

where CT and CP are the time-averaged values of CT and CP within one oscillating period. It is noted that Froude efficiency
proposed by Tytell and Lauder (2004) was defined to evaluate the swimming efficiency by many studies (Borazjani and
Sotiropoulos, 2008; Liu et al., 2017). But it can only be applied when the mean value of net force acting on the swimmer
body is zero which does not apply to this work (Borazjani and Sotiropoulos, 2008), therefore, it is not defined in this
study.

3. Governing equations

In this section, the governing equations for the fluid and the solid are outlined. The fluid and structural domain are
represented by Ωf with the boundary Γf and Ωs with Γs respectively. The fluid–structure interface Γi = Γf ∩Γs between
the fluids and structures is the common boundary of the two domains. The information at the interface is exchanged
between the fluid and structural solver.

3.1. Fluid solver

The in-house fluid solver solves the viscous, compressible flow which is governed by the laws of the conservation of
mass, momentum and energy, and it can be expressed in the integral form as

∂

∂t

y

Ωf

WdΩf +

{

Γf

(Fc − Fd) · ndΓf = 0, (4)

where n is the unit normal vector in the outward direction. The conservative variable vector W in Eq. (4) is defined as

W = {ρ, ρu, ρv, ρw, ρE}
T , (5)

where ρ is the density of the fluid, u, v, w represent the three velocity components in Cartesian coordinates and E is the
total energy.

The vector Fc in Eq. (4) are the convective and pressure fluxes which are given by

Fc =

⎡⎢⎢⎢⎣
ρur ρvr ρwr
ρuur + p ρuvr ρuwr
ρvur ρvvr + p ρvwr
ρwur
ρEur + pu

ρwvr
ρEvr + pv

ρwwr + p
ρEwr + pw

⎤⎥⎥⎥⎦ , (6)

where p is the pressure. Within an FSI application, to allow for the movement and deformation of the domain boundary,
the arbitrary Lagrangian–Eulerian (ALE) formulation is the most commonly used to handle the flow equations on a
deformation mesh. It is achieved here by defining fluxes relative to the motion of the surfaces of the control volume,
which are expressed by the relative velocity ur , vr and wr given as

ur = u − ug
vr = v − vg
wr = w − wg ,

(7)

where the flow velocity {u, v, w}
T and the grid velocity

{
ug , vg , wg

}T are described in a stationary Cartesian coordinate
system.

The fluxes arising from the viscous shear stresses and thermal diffusion are denoted by Fd and can be formulated as

Fd =

⎡⎢⎢⎢⎣
0 0 0
τxx τxy τxz
τyx τyy τyz
τzx τzy τzz

uτxx + vτxy + wτxz − qx uτyx + vτyy + wτyz − qy uτzx + vτzy + wτzz − qz

⎤⎥⎥⎥⎦ , (8)

where, for a Newton–Fourier fluid considered here, the shear stresses ταβ are defined as

ταβ = µ

[(
∂uα

∂xβ

+
∂uβ

∂xα

)
−

2
3

(∇ · u) δαβ

]
, α, β ∈ {x, y, z} . (9)

The heat fluxes q are defined as

q = −k∇T , (10)

where k denotes the thermal conductivity and T is the temperature.
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3.2. Structural solver

For the present FSI applications in which the temperature is assumed to be known, the basic equation of the finite
element method is the weak form of the balance of momentum which can be written in the differential form as

ρs
D2U
D2t2

= ∇ · P + ρsf, (11)

where the acceleration of the material point is obtained by the second derivatives of displacement vector U of the
structure, and surface forces are modeled by the second Piola–Kirchoff stress tensor P and body forces of per unit mass
such as gravity are represented by f. The solid density is denoted by ρs.

A constitutive equation describing the relation between the stress and the strain is used to close up Eq. (11). For a
Saint Venant–Kirchhoff material, the second Piola–Kirchoff stress tensor P is obtained by

P = C:E, E =
1
2

(
FTF − δ

)
, (12)

where C is the elasticity tensor, E represents the Green–Lagrange strain tensor, the deformation gradient is characterized
by F and δ is the unit tensor.

4. Numerical approach

In this section, the numerical techniques applied to solve the governing equations of fluid and structure and the
coupling algorithm are described. A partitioned or segregated approach is implemented to handle FSI coupling in the
present work. The governing equations for the fluid and the structure are solved separately and the coupling is established
externally.

4.1. Fluid dynamics

In this work, the governing equations of flow, i.e., Eq. (4), are discretized using a cell-centered finite volume method
based on a multi-block structured grid system. Using a structured methodology, the fluid domain Ωf is divided into an
array of hexahedral cells. For each cell indexed by (i, j, k) Eq. (4) holds and can be reformulated in the semi-discrete form
given by

∂

∂t

(
Wi,j,k∆Ωf

)
i,j,k − Ri,j,k = 0, (13)

where Wi,j,k are the average flow variables of the cell, ∆Ωf denotes the cell volume, and Ri,j,k is the residual, which
measures the net fluxes entering the hexahedral cell through all six cell faces. To stabilize the scheme and eliminate the
spurious numerical oscillations, an artificial dissipative term is introduced in Ri,j,k (Jameson et al., 1981).

Through the application of the dual-time stepping scheme (Jameson, 1991), Eq. (13) can be reformulated at each time
step as the following steady-state flow problem in a pseudo-time t∗

∂

∂t∗
W(n+1)

=
1

∆Ωf
R∗
(
W(n+1)) , (14)

where

R∗
(
W(n+1))

= R
(
W(n+1))

−
3
(
W∆Ωf

)(n+1)
− 4

(
W∆Ωf

)(n)
+
(
W∆Ωf

)(n−1)

2∆t
, (15)

where the solution vectors of two previous time levels are used here which are denoted by superscript n and n − 1.
In this study, parallelization is achieved by domain decomposition based on message passing interface (MPI) to enable

large-scale computation. The different grid blocks are automatically distributed over a number of processors by the block
size with the application of a load-balancing algorithm. Furthermore, the local time-stepping and multigrid method is
implemented to accelerate the convergence and implicit residual smoothing is applied to increase the stability of the
solution.

4.2. Solid dynamics

The general governing equation of the solid dynamics, i.e., Eq. (11), is discretized using the finite element method.
Using the standard virtual work method, the linear algebraic equation system can be obtained by discretizing Eq. (11) in
the whole solid domain Ωs as

[K] {U} + [M]
D2

Dt2
{U} = {F} , (16)
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Fig. 3. Flow chart of the implicit FSI coupling in a partitioned approach.

where [K] is the global stiffness matrix, [M] is the global matrix and [F] is the global force vector respectively. The three
assembled terms are given by

[K] :=
∑
e

[L]Te [K]e [L]e ,

[M] :=
∑
e

[L]Te [M]e [L]e ,

{F} :=
∑
e

[L]Te {F}e ,

(17)

where [K]e denotes the element stiffness matrix, [M]e is the element mass matrix, {F}e is the element force vector and
[L]e denotes the element localization matrix.

The time domain is discretized using the α-method here. Denoting the velocity vector {V} :=
{
U̇
}
and acceleration

vector {A} :=
{
Ü
}
, the solution at time level n + 1 can be obtained by

{V}n+1 =

{
Ṽ
}
n+1

+ γ∆t {A}n+1 , (18)

{U}n+1 =

{
Ũ
}
n+1

+ β (∆t)2 {A}n+1 , (19)

where
{
Ṽ
}
n+1

and
{
Ũ
}
n+1

can be considered as the predictor at time level n + 1 which are only dependent on the values
at time level n. A more detailed interpretation of its implementation can be found in Appendix A.

In this work, the implementation of finite element method solver is based on CalculiX written by Dhondt (2004), in
which a variety of element types including the brick element, the tetrahedral element and the wedge element are used
to discretize the solid domain and define the shape functions.

4.3. Mesh deformation algorithm

In FSI simulation, the structure is subject to the deformation under the surface normal force applied to it. The
configuration of the interface Γi changes with time and the flow grid has to be updated to accommodate with the unsteady
boundary. An efficient algebraic method is applied to interpolate the displacements of the meshes at the interface Γi to
yield displacements of the inner grid points of the fluid domain Ωf by iteratively solving the equations of static equilibrium
with a predictor–corrector process (Tsai et al., 2001). Hereby, all the block corner points of the fluid domain are assumed
to be connected with each other by springs whose rigidities are inversely proportional to the length of the connecting
edge. Once the displacements of vertices at the boundary are determined, the displacements of inner points are obtained
using a spring-analogy method (Batina, 1990) and arc-length-based Trans-Finite Interpolation (TFI) method (Sadeghi et al.,
2003). To retain the original grid quality after deformation, Hermite polynomials are used to maintain the grid angles of
the original grid near the wall.
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Fig. 4. Computational domain layout (a) and generated mesh (b) of a flexible cantilever behind a square cylinder.

4.4. Fluid–structure coupling

4.4.1. Coupling scheme
In the present study, a partitioned coupling scheme is used to reduce the effort to adapt the original computation

codes and preserve both the advanced features of the fluid and solid solvers. However, the partitioned method does not
mean it is a loose coupling, in which numerical instability poses challenges to convergence (Förster et al., 2007; Küttler
and Wall, 2008). Especially, in the current FSI application for a bio-inspired fish fin propulsion, the densities of fluid and
solid are comparable, thus the numerical instabilities must be carefully dealt with Causin et al. (2005).

Within the present framework of a partitioned coupling, to ensure the aforementioned numerical stability during the
present FSI simulation, an implicit scheme is designed here. In this work, the in-house fluid solver is integrated with
CalculiX via preCICE (Bungartz et al., 2016), and the adaptor of CalculiX used to connect it with preCICE is implemented
by Uekermann et al. (2017).

Two implicit coupling fashions, i.e., parallel and serial which correspond to the parallel and staggered execution of the
fluid and solid solver respectively, are implemented in preCICE (Mehl et al., 2016). Here, to take serial as an example,
the simplified flow chart illustrating the serial implicit coupling is presented in Fig. 3. A more detailed description of the
flow chart of Fig. 3 can be found in Appendix B. Within the current coupling framework, an improved IQN-ILS method
(Degroote et al., 2009) implemented in preCICE, is applied to stabilize and accelerate the coupling iterations. The input and
output data of previous iterations are used to approximate the inverse Jacobian of the residual operator of the fixed-point
formulation and perform a Newton-like solver step (Mehl et al., 2016). In addition, to avoid the potential singularity of the
approximated inverse Jacobian, a QR-based filtering technique is employed to filter out data which is linearly dependent
(Haelterman et al., 2016). In the present work, a parallel coupling is mainly employed for better efficiency, despite that
both lead the same physical results which has been demonstrated in Mehl et al. (2016).

4.4.2. Data mapping and communication
The fluid and structural meshes are non-matching here, which makes it impossible to copy the data values from

one side to another directly. Therefore, an interpolation method is necessary to map data between two solvers at the
interface. In this work, the radial basis functions (RBF) based interpolation as described in Lindner et al. (2017) is applied
to transfer node forces from the fluid to the solid and vertices displacements oppositely. Both the conservative and
consistent mappings are implemented in the RBF interpolation. We apply a consistent mapping during the transformation
of displacements, while a conservative fashion for force mapping which makes the sum of the data values in both sides
equal to ensure the energy balance over the interface (de Boer et al., 2008).

The communication between the fluid and structural solver is a fully parallel point-to-point fashion. In this study, it
means that the communication channels are only constructed between those processors that have been assigned with
blocks with boundaries interface which are marked after the distribution of grid blocks.

4.4.3. Convergence criterion
A crucial ingredient of the partitioned coupling is the measurement of its convergence towards the monolithic solution

in each time step. By applying the discrete l2 norm of the difference of displacements between the current and last
iteration, a scalar representative of the residual vector can be obtained as

∥rk+1∥2 =

(∑
i

(
rk+1,i

)2)1/2

. (20)
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Therefore, a relative convergence measure yields asr s,k+1

2

∥sk∥2
< ε ∧

r f ,k+1

2f k2 < ε, (21)

where ε is predefined. With the proceeding of iterations the relative residual drops. If it is not below than ε, another
sub-iteration will be performed again until the relative residual small enough to satisfy the criterion.

5. Validations and self-consistency study

The fluid solver used in the present work has been extensively validated in our previous work (Liu et al., 2013, 2016;
Xiao and Liao, 2010; Xiao et al., 2012). Here the following three properly selected cases are used to validate the coupling
of the fluid solver with CalculiX via preCICE. Additionally, a self-consistency study is performed to provide a sensitivity
study on the new FSI solver.

5.1. Validation cases

5.1.1. Flow over a flexible cantilever behind a square cylinder
This case consists of a fixed square bluff body with an elastic cantilever attaching in its wake (Nakata and Liu, 2012;

Olivier et al., 2009; Wood et al., 2010). Previous studies indicated that the flow separated from the leading edge of the
square cylinder would induce a periodic oscillation of the flexible cantilever.

The layout of the computational domain and generated fluid mesh are presented in Fig. 4. In this simulation, the fluid
domain contains 153428 cells in the form of a multi-block grid, while structural mesh comprises 123 quadratic wedge
elements with standard shape functions (Dhondt, 2003).

In the present simulation, Re = Ud/ν = 330, based on the dimension d = 0.01 m of the square body, which can give
rise to a transient Von Karman vortex street under such a Reynolds number.

The physical properties, i.e. mass ratio m∗
= ρse/ρf l = 1.27, non-dimensional bending stiffness K = EI/

(
ρfU2l3

)
=

0.23, and Poisson’s ratio νs = 0.35 are chosen to make the frequency of shedding vortex approximate the first Eigen-
frequency of the cantilever, so that a remarkable oscillation can be observed. In the structural part, the left end of the
cantilever is set as fixed, i.e., the x and y direction freedom is locked, and the right end is set free.

Fig. 5 depicts the displacement of the free end of the flexible beam in the y-direction with two time step sizes, which
are defined as ∆̃t = ∆tU/d. As seen, the displacement lies in a range of 0.85∼1.30 cm, and dimensionless oscillation
period T = TU/d varies around 17.08 equivalent to a dimensionless frequency f = 1/T = 0.0585. It is very close to the
theoretical Eigen-frequency of the flexible cantilever, which is 0.0591. Observed from published literature (Dettmer and
Perić, 2006; Habchi et al., 2013; Matthies and Steindorf, 2003; Olivier et al., 2009; Wood et al., 2010), the displacement
amplitude lies between 0.8∼1.4 cm, and T ranges between 15.80 and 17.44. Therefore, the present simulation results have
a good agreement with the previous numerical solution.

The vorticity contour in the z-direction within one oscillation period is presented in Fig. 6. During one oscillation
period, two clock-wise vortices form at the upper region while another two counterparts form at the lower region. In
addition, the Von Karman vortex street behind the square bluff is dispersed due to the existence of oscillating elastic
cantilever. Then it seems to be stretched along the downstream direction, but evolves to an independent round-similar
shape away from the cantilever.

5.1.2. The bending of a 3D flexible plate in a uniform incoming flow
This validation involves a flexible plate which is bent while placed in crossflow. The original case derives from an

experimental study on the flow-induced reconfiguration of flexible aquatic vegetation conducted by Luhar and Nepf
(2011). In their experiment, drag and posture of the model blades that span the natural range for stiffness and buoyancy of
sea-grass were measured and recorded. One of their experiment cases was then numerically simulated as an FSI validation
by Tian et al. (2014). In their work, they quantitatively compared the results with experimental data in the presence of
gravity and buoyancy and performed a series of simulations in the absence of them for the purpose of benchmarks studies.
Here, the latter cases are chosen to validate our proposed multi-physics numerical suite.

The configuration of the elastic plate is depicted in Fig. 7, which is placed vertically in the cross-flow direction with its
bottom end clamp-mounted but the end free. The dimensionless parameters are: length h = 5b, thickness t = 0.2b, where
b is the width, Re = U0h/ν = 100, m∗

= ρsb/ρf t = 0.14, K = EI/ρfU0
2b3 = 2.39, νs = 0.4. The fluid computational

domain is a rectangle box extending from (−5b, −8b, −8b) to (12b, 8b, 8b) with a number of 3 916111 calculation grid
cells, whose origin locates at the center of the plate. The first grid height is 0.002b. The non-dimensional time step size
∆̃t = 0.0208U0/b. Meanwhile, 1400 quadratic brick elements (Dhondt, 2004) with standard shape functions are used to
model the flexible plate in CalculiX.

During the simulation, the flexible plate eventually reaches a stable configuration, as shown in Fig. 8. As seen, the flow
incident surface of the plate near the bottom end bears the largest fluid pressure, while with approaching the top side, its
hydrodynamic pressure experiences a continuous decrease, as well as the pressure difference between the two surfaces
in the flow direction. This is consistent with the experimental data that in comparison with a rigid aquatic vegetation
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Fig. 5. Vertical tip displacement of the cantilever beam with different time step sizes.

Fig. 6. Evolution of vorticity in z-direction around the cantilever within one oscillation period.

model, a flexible one tends to bend to a steady configuration to reduce the flow-induced drag (Luhar and Nepf, 2011;
Tian et al., 2014).

The displacement of the plate center and the drag coefficient, which is defined as Cd = Fx/(0.5ρfU0
2bh), in the absence

of gravity and buoyancy, are compared in Table 1. It indicates that the present FSI simulation results match well with the
counterparts in Tian et al. (2014).

5.1.3. The response of a flexible plate in a forced harmonic heave motion
This numerical validation case involves an experimental study conducted by Paraz et al. (2014, 2016). It consists of a

horizontal flexible plate, which is made of the polysiloxane. The plate has a rounded leading edge and a tapered trailing
edge. The thickness of plate e is 0.004 m, chord length c is 0.12 m and span s is 0.12 m, giving an aspect ratio s/c = 1.
In their experiment, the leading edge was forced into a harmonic heave motion while the trailing edge was set free. The
elastic plate deformed under the hydrodynamic forces (Paraz et al., 2014).

The CFD simulation is carried out with a structured fluid mesh which contains 57424 hexahedron cells along with 105
structural quadratic brick elements. The response of the plate is characterized by the change of the relative displacement
of the trailing edge with respect to that of the leading edge ATE/ALE and the phase difference ϕ as the forcing frequency
is varied. The response of the plate with varied forcing frequency obtained by our numerical simulations is depicted in
Fig. 9.

It can be found from Fig. 9 that the current emulation results agree well with the counterparts in the experiment.
A sharp peak is observed in the displacement curves of the trailing edge when the forcing frequency approximates the
natural frequency f0 in both experiment and numerical simulation, where the ATE is 2.5 times larger than the ATE. This is
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Fig. 7. The layout of flow over an elastic plate.

Fig. 8. The deformed plate with three representative horizontal slices colored with pressure distribution (a) and the streamline around the plate
(b).

the first resonance peak according to the analysis by Paraz et al. (2014). With the increase of forcing frequency, the phase
shift ϕ witnesses a continuous increase, which indicates stronger interactions between fluid and structure with a larger
forcing frequency.

In Fig. 10, the deformation of the plate at the resonance frequency is illustrated by the superposition of the centerlines
of the plate within one forcing cycle. According to the definition of Dai et al. (2012b), the current deformation pattern of
the plate corresponds to the first mode. It is noted that a weak asymmetry in up-and-down of the shape mode is observed
in Fig. 10(a) from the experimental results, but not from that of the numerical simulations results. This may be explained
by the fact that in the experiment, the density of the plate is slightly larger than that of water and the gravity effect plays
a role in the response of the plate, while in the present simulation the gravity influence is ignored. Even so, since the two
densities approximate to each other, the neglect of the gravity does not lead a big difference.

5.2. Self-consistency study

The self-consistency study is performed to assess the appropriate mesh and time-step resolution for Re = U∞c/ν =

2500, m∗
= 0.02, νs = 0.25, f ∗

= 1, θm = 10 degree, and the fin is uniformly distributed with a dimensionless stiffness
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Fig. 9. The relative displacement of the trailing edge with respect to that of the leading edge of the flexible plate, ATE/ALE , and the corresponding
phase shift as a function of the normalized frequency f /f0 for Re = 6000, ATE = 0.004 m and rigidity B = 0.018 N m.

Fig. 10. Mode shape of the plate when f /f0 = 1 obtained from the experiment (a) (Paraz et al., 2014) and current numerical simulation (b).

Fig. 11. Sketch of the computational domain (a) and the generated fluid mesh around the caudal peduncle-fin model (b).

of Kc = 1. The computational domain and fluid mesh around the caudal peduncle-fin model are shown in Fig. 11. On the
peduncle-fin surface, the no-slip condition is applied, while for the other boundaries, the non-reflective far-field boundary
condition is imposed. Three grids are generated: a coarse grid with 2294292 nodes and minimum spacing of 1.48×10−3c
in each direction, a medium grid with 4032768 nodes and minimum spacing of 9.9×10−4c , and a fine grid with 5791680
nodes and minimum spacing of 6.19×10−4c. The structural mesh contains 1461 quadratic wedge elements. Furthermore,
the non-dimensional time-step corresponding to the coarse grid is ∆̃t = ∆t/T = 0.00909, where T is the oscillation
period, the medium grid is ∆̃t = 0.00694 and the time step size for the fine one is ∆̃t = 0.00556. The results of CT
when three different grids and time step sizes are used are shown in Fig. 12, and the mean coefficients CT , Cp as well as
efficiency are compared in Table 2. Observed from the comparison, we find that the medium resolution setup is sufficient
to simulate the flow field around the caudal fin. Therefore, the medium grid with a time-step ∆̃t = 0.00694 is used for
the following simulations.

6. Results

With the above code verifications and resolution study, we applied the developed FSI solver to the flexible fins study
aforementioned. The Reynolds number under consideration is Re = 2500, the mass ratio is m∗

= 0.02, the rotation angle
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Fig. 12. Comparison of thrust coefficients CT with three different resolutions.

Table 1
Comparison of drag coefficient and deformation in the absence of gravity and buoyancy when Re=100.

Cd Dx/b Dy/b

Tian et al. (2014) 1.02 2.34 0.67
Current study 1.06 2.31 0.678

Table 2
CFD mesh and time-step sensitivity test results.

Categories CT CP η

Mesh_Coarse, ∆̃t = 0.00909 0.221 1.045 0.211
Mesh_Medium, ∆̃t = 0.00694 0.220 1.036 0.212
Mesh_Fine, ∆̃t = 0.00556 0.220 1.033 0.213

θm is 10 degree, the Poisson ratio νs is 0.25, and the reduced frequency is f ∗
= 1. Most of these parameters are chosen

to match with that in the experimental study by Ren et al. (2016a) at similar scales. It is worth noting that under such
relatively low Reynolds number, no turbulence model is employed in our study, i.e., the flow is assumed as laminar, which
is adopted in biomimetic studies (Mittal et al., 2006; Liu et al., 2017; Shoele and Zhu, 2012). For all the simulations, the
relative coupling convergence criterions εrelative of displacement and fluid forces within each time step are set as 3×10−3

to ensure the energy balance at the interface.
The predicted time-averaged thrust, lateral forces, lift forces, power input coefficients and efficiency, as well as the tail

excursion at point A of the caudal fin under various flexural stiffnesses are summarized in Fig. 13, in which the values
of a rigid fin are also included to facilitate comparison. As seen from the figure, the flexibility and its distribution have a
significant effect on the propulsive performance and its deformation of the caudal fin. Overall, for all the cases considered
here, the tail excursion increases monotonically as Kc is raised, with the exception of that of the fin with a heterocercal
profile when Kc is larger than 10. Meanwhile, the CT , Cy, Cz , CP and η vary remarkably when the caudal fin is assigned
with different stiffness distributions along the surface of fins. In addition, even with the same Kc , fins with different
stiffness distributions present diverse propulsive capabilities. In particular, the heterocercal profile, the only asymmetrical
distribution, shows distinct features as compared to others in terms of the curve variation patterns, which is consistent
with the observations from the experiment work by Esposito et al. (2012).

Compared with a rigid fin, flexible fins yield larger thrust unless when the stiffness is very small, i.e., the fin is too
compliant, and under this condition, the excursion of the flexible fin is also smaller than that of a rigid one. Under the
parameters studied, the thrusts generated by flexible fins firstly witness a sharp increase, and most of them reach the
peaks when Kc = 5, with an exception for heterocercal distribution, where it crests at Kc = 10. This is consistent with
the findings by Esposito et al. (2012), where the mean fluid forces generated by both asymmetric and symmetric motions
peak at different fin stiffness. After the crest, all the CT decease with the increase of stiffness. This variation pattern can be
found in many previous FSI studies involving bio-inspired propulsion (Dai et al., 2012a; Olivier and Dumas, 2016; Shi et al.,
2017). Generally, among these five variations, CT produced by a fin with heterocercal stiffness distribution differs most
with others, and apart from when the fin is highly flexible, its magnitude is much smaller than the others. Meanwhile, the
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Fig. 13. Summary of the tail excursion at point A (a), time-mean thrust (b), power input coefficients (b), lateral forces (d), lift forces (e) and
propulsion efficiency (f) when flexural rigidities are varied for uniform (black dash), heterocercal (red solid), W-shape (blue dot), reverse cupping
(olive dash dot) and cupping (cyan short dash) stiffness distribution.

fin with cupping stiffness profile generates the largest thrust and these with uniform and W-shape distribution produce
quite close thrust values, which is consistent with the results in Esposito et al. (2012).

With a closer inspection of Fig. 13(b), we can find that when Kc < 5, as the stiffness is increased, the differences
of thrust generation due to the various flexibility distributions become more pronounced, which is consistent with the
conclusion drawn by Esposito et al. (2012). In addition, for much stiffer fins, i.e., Kc > 10, the differences appear less
distinct. This may be attributed to the fact that with the fins become stiffer, the deformations are more limited, and thus
diminishing the differences caused by various stiffness profiles. This has been reflected by other research on the flexible
swimmer studies (Dai et al., 2012b; Olivier and Dumas, 2016). However, previous numerical studies (Shi et al., 2019;
Zhu and Bi, 2017) concluded that the differences become more remarkable as the fins are more flexible, which seems
contradictory with the present results and the experimental study. Nevertheless, it is noted that fundamental difference
exists in terms of kinematics and numerical model to calculate the deformation of fins. In their studies, the locomotion
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Fig. 14. The time-mean thrust (a), power input coefficients (b) and propulsion efficiency (c) re-plotted against the Strouhal number St defined using
the tail excursion.

is accomplished by the sway motion of rays embedded in the fin membrane instead of the rotation in the experiment
(Esposito et al., 2012) and this work. On the other hand, in their fin models, the various stiffness profiles are assigned on
each fin ray, i.e., nonlinear Euler–Bernoulli beam and the deformation of the fin is mainly determined by simplified linear
spring models between rays. In this study, the fin is composed of segments with different rigidities, and the flexing is
determined both by the fluid forces and assigned stiffness.

In terms of the propulsion efficiency η, clear peaks are observed for all the variation patterns of stiffness with the
increase of flexural rigidities Kc . The highest efficiency is achieved by the fin with cupping inflexibility distribution at
Kc = 1.5. Similar to the variation patterns of CT , η of the fin with a cupping stiffness profile performs best, and those of
the fins with uniform and W-shape distribution show no evident difference. Again, the fin with a heterocercal stiffness
fashion yields the lowest efficiency like the smallest thrust shown in Fig. 13(b) among these five variation patterns when
Kc remains the same. In general, the efficiency is more sensitive to the variation of Kc when its values are small, which can
be observed that when the Kc is small, e.g., when it is less than 1, the η curves drop sharply, and even a slight decrease of
Kc results in a significant loss in propulsion efficiency. Instead, as the fin is much less flexible, the variation of η appears
flatter, which is consistent with previous results in Shi et al. (2019) and Zhu and Bi (2017).

The propulsion efficiency is determined both by CT and CP , therefore, the curves of time-averaged energy expenditure
coefficients may explain the above observed variation fashions. Seen from Fig. 13(c), apart from the CP of the fin with a
heterocercal stiffness profile when Kc is larger than 2, the five curves present no pronounced difference in magnitude. This
may manifest the reason for the similarity of variations in CT and η, i.e., when CP approach with each other, the variation
of η is mainly determined by CT . On the other hand, by comparison of Fig. 13(b) and (c), we may find that difference
of the propulsion efficiency among the fin with heterocercal and other stiffness distributions mainly results from its less
thrust production.

Regarding the time-averaged lateral forces coefficients, more complex variations are observed compared with the
discussion above for CT and CP indicated by Fig. 13(b) and (c). Under the parameters studies, much larger lateral forces
are produced by flexible fins in comparison with that by a rigid fin, and the Cy curves present clear groove-similar profile.
Large lateral force may not be beneficial to a straight-line cruising for a fish, but it can provide better maneuvering via
providing a turning moment. It can be observed in Fig. 13(e) that, unsurprisingly, the heterocercal distribution, as the
only asymmetrical stiffness fashion, yields the largest mean lift forces, having the same magnitude as thrust, while Cz of
fins with the other distribution patterns are negligible, which is in accordance with the experimental observation from
Esposito et al. (2012).

The Cz of the fin with a heterocercal profile are all negative, indicating their contribution to the downwards maneuver-
ing, and it witnesses a significant increase and then declines as the increase of stiffness. This may seem contradictory to the
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Fig. 15. Time history of CT , Cy and CP within one oscillation period of a fin with cupping (cyan short dash), heterocercal stiffness distribution (red
solid) and a rigid fin (gray dark dash) when Kc = 5.

results of Zhu and Bi (2017), where they concluded that the lift forces which were all positive experienced a continuous
drop when the fin is stiffer. However, it should be noted that in this study, the heterocercal profile differs from that in
Zhu and Bi (2017), i.e., the flexural rigidity increases from ventral to dorsal as shown in Fig. 2(b), which is inverse to their
counterparts. This may explain the resultant opposite lift direction. On the other hand, different variation patterns are
likely to be attributed to the aforementioned differences such as kinematics and different numerical model and solution
of deformation, combined with an inviscid fluid model which neglects the viscous effect and vortices effect shed from the
leading dorsal and ventral edge.

To evaluate the swimming performance of aquatic animals, a dimensionless parameter, the Strouhal number, is
widely used in biomimetic studies to quantify the propulsion of a pitch locomotor (Eloy, 2012; Sfakiotakis et al., 1999;
Triantafyllou et al., 1993). Here we defined it as St = fa/U∞, with a the maximum peak-to-peak excursion of the tail. In
Fig. 14, we re-plotted the CT , CP and η against the St. As depicted in Fig. 14, under the parameters studied, the St number
ranges between 0.3 and 0.8. In most cases, with the increase of the St, CT and CP witness continuous rise for all the five
stiffness variation patterns. It can be also observed that the peak efficiency typically occurs within a range of 0.4 to 0.6,
which is in accordance with the results in Dai et al. (2012b) of a flexible pitching plate.

The instantaneous thrust, lateral forces and power expenditure coefficients when Kc = 5 are depicted in Fig. 15. The
other symmetric stiffness profiles present similar fashions as cupping which is shown in this figure. In accordance with
the results in Esposito et al. (2012), the magnitude of the thrust of flexible fins increases as the fin accelerates from its
extreme lateral position to the midline, and then reaches the largest approximately at the mid-stroke. Thrust gradually
decreases after the fins pass the midline and then turns into a net drag, which is consistent with previous results (Akhtar
et al., 2007; Zhu and Shoele, 2008). In terms of Cy, with a comparison of Figs. 13(d) and 15(b), even though the mean
lateral force is smaller for a rigid fin, however, the curves of flexible fins are flatter, which means less disturbance from
lateral forces and it benefits a steady straight line swimming for locomotors. Compared with a rigid fin, flexible fins require
less power input, which may be explained by the fact that the flexibility reduces the work done to the surrounding fluid
significantly.

The typical deformation patterns of fins with various stiffness fashions are presented in Fig. 16. For better visualization
of the curvatures in the spanwise direction, Fig. 17 depicts the surface patterns of trailing edge in the y-z plane during
one flapping period. To facilitate the comparison, the posterior views of the real fish in-vivo obtained in the experimental
studies using high-speed digital video cameras (Flammang and Lauder, 2008, 2009) are also presented. In their experiment,
the fish was placed in a flow tank and induced to swim freely within the center region of the flow tank. By comparison
of Fig. 16 with Fig. 17, it can be observed that the pure passive deformations of our models by assigning non-uniform
stiffness distributions cannot exactly replicate as pronounced spanwise deformations as observed from a real fish fin. This
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Fig. 16. Typical fin deformation in xy (left column) and yz view of fins with uniform (a), heterocercal (b), W-shape (c), reverse cupping (d) and
cupping (e) stiffness profile. The fin is dyed in pink color for recognition. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

difference may be explained by the fact that fish can actively control the propulsive surface conformation by complex
muscle activities at the bases of the fish ray halves (hemitrichs) as suggested by Lauder and Madden (2006), and this
active control may play a dominant role in the fin deformation. With a closer inspection of Fig. 17, it can be found that
one common feature of the deformation styles of our models is that the deflection around the center of the fin is smaller
than those away from the central segment regardless of how the stiffness distributes. This deformation pattern was also
observed by Zhu and Shoele (2008) in a ray-strengthened caudal fin study. This is because the deflection of a cantilever,
the flexible segment herein which composes the fin surface, is entirely determined by the external fluid load, its structural
stiffness and the segment length.

The displacements of the point A and B at the trailing edge of the caudal fin are shown in Fig. 18. In general, it
can be observed that the point A always leads the excursion. Like the propulsive performance presented in Fig. 13, the
displacements of A and B of the fin with uniform and W-shape stiffness style show no evident distinction. The excursions
of A and B for a heterocercal distribution present significant difference with each other, which is caused by the large
deflection of the dorsal fin segment. It can also be observed that for a highly flexible fin, the deflection in the y-direction
is rather small, which is directly associated with the actual pitching angle of the peduncle-fin model with respect to
the x-axis. With the increase of inflexibility, the actual pitching angle increases accordingly. This may explain the thrust
enhancement depicted in Fig. 13(b) when Kc = 5 compared with that of fins that are more compliant.

Fig. 19 presents the wake flows of the caudal peduncle-fin in Y vorticity contour. Two main tip vortices shed from
the dorsal- and ventral-most trailing edge of the fin are formed parallel and alternatively. They have opposite rotation
directions with one in counterclockwise and the other clockwise, and for symmetrical stiffness profile, their vortices are
approximately equal. These results match with those obtained in Esposito et al. (2012) and Ren et al. (2016b) using digital
particle image velocimetry (DPIV) techniques and previous numerical simulations (Shi et al., 2019). A closer inspection of
Fig. 19(e) reveals that another two observable pairs of small vortices are also attached right behind the trailing edge of the
fin with cupping stiffness style, and away from that, the farther wake vortices are funneled inward towards the midline. As
observed by Esposito et al. (2012), this funneling causes an accelerated jet of fluid between the vortices. These additional
small vortices and remarkable funneling effect may contribute to the best propulsive performance of cupping distribution
among the five profiles. However, in comparison, the asymmetrical distribution of vortices breaks the funneling as well as
the increase of fluid velocity in the wake of the fin with heterocercal stiffness distribution, which deteriorates its thrust
generation.

The wake structures of the flexible fins with the cupping and heterocercal stiffness distribution when Kc = 2 are
depicted in Fig. 20. It can be observed that the wake of the fins is composed of a sequence of vortex rings which induce a
jet flow in the forward thrust generation direction. The cow-horn shaped vortex rings associated with a cupping stiffness
profile present a perfect symmetry relative to the midline in the z-direction. Similar wake patterns are generated by
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Fig. 17. The deformation patterns of the trailing edge of the fin when Kc = 0.5 (a), and posterior view of a bluegill fish adopted from (Esposito
et al., 2012) (b).
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Fig. 18. The displacements of the point A and B when Kc = 0.5 and Kc = 5 for the fin with uniform (a), heterocercal (b), W-shape (c), reverse
cupping (d) and cupping (e) stiffness distribution.

the fins with a symmetric stiffness distribution, i.e., uniform, W-shape and reverse cupping style, therefore, they are not
presented here. For a heterocercal stiffness style, as the Y vorticity shown in Fig. 19(b), the vortex rings show a distinctive
asymmetry with regard to the midline, which induces the flow to point slightly downwards (or upwards). Therefore,
prominent lift forces are produced as depicted in Fig. 13(e).

The pressure distribution along the fin surface is depicted in Fig. 21. With an exception of the fin with a heterocercal
stiffness profile, which is asymmetric in both left and right sides, the others are all symmetric in the z-direction. The
right side, as the incident flow surface, is covered by negative pressure, which is applicable to symmetric stiffness
variation patterns. However, the pressure distribution on the left side shows that a cupping profile fin has the largest
high-pressure zone thus yields the largest pressure difference. This prominent pressure difference along the negative
x-direction contributes to the thrust generation as indicated by the largest thrust shown in Fig. 13(b). Due to the power
input are almost identical for four symmetric stiffness profiles as displayed in Fig. 13(c), a maximum or optimal efficiency
is achieved with a cupping fin.
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Fig. 19. The wake flow contoured in Y vorticity along with streamlines at plane y = 0.3 c when Kc = 2 at t = T of the flexible fin with uniform
(a), heterocercal (b), W-shape (c), reverse cupping (d) and cupping (e) stiffness distribution.

7. Conclusions

In this work, we developed a CFD numerical solver to simulate the fluid–structure interaction problem in aquatic
propulsion, which is achieved via a coupling of our in-house fluid code with a finite element method based structural
solver. Within this framework, the surrounding flow of a compliant fin is resolved by the solution of three-dimensional
unsteady Navier–Stokes equations. The structural response is obtained by solving the equations of momentum balance
in the weak form with a finite element method. A sophisticated IQN-ILS coupling algorithm is employed to stabilize
numerical solution and accelerate iterative convergence.

Through three properly selected validation cases, we demonstrate the accuracy of the developed code via comparisons
with other available numerical or experimental results. Beyond that, we employ this multi-physics solver to simulate a
rotational passively deformed caudal fin model with the non-uniform flexibility distribution along the fin surface. The fin
consists of nineteen segments with variable stiffness. In an attempt to test whether the CFD tool is possible to replicate
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Fig. 20. Iso-surface of vorticity field (Q criterion) when Kc = 2 at t = T in the wake of the flexible fins with cupping (a) and heterocercal (b)
stiffness distribution. The peduncle-fin is dyed in pink color for recognition. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

the real fin deformation, five stiffness distribution patterns are considered, e.g., uniform, heterocercal, W-shape, reverse
cupping and cupping.

The obtained numerical modeling results are consistent with the experiment from Esposito et al. (2012) in two
aspects. Firstly, we illustrate that the fin deformation, particularly the trailing edge curvature resembles the experimental
observation. Secondly, the fin with cupping deformation yields the best overall performance, whereas fin with heterocercal
profile, representing the rolling motion of fish, produces the least thrust but with considerable lift forces for maneuvering
purpose. The excellent performance brought by fin with cupping stiffness is due to the aforementioned remarkable
funneling effect and the attached small vortices around trailing edges. However, this does not occur with a heterocercal
pattern. We also find that with the increase of flexural rigidities, the difference in terms of thrust generation becomes
more pronounced before the flexibility reaches a threshed.

As a final point, it is worthwhile to mention that, in the present study, we consider a flexible fin shape with a passively
deformed feature. However, the developed numerical solver is not limited to such simple geometry. Also, with the use
of this tool, it is proved that we can achieve an equivalent surface deformation and an enhanced propulsion effect as a
biologically actively muscle-controlled flexible fish fin. Therefore, the potential applications of this tool can be found in
wide bio-mimetic areas such as AUV and aerial vehicle.
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Appendix A

The velocity vector at time level n is given by{
Ṽ
}
n+1

= {V}n + (1 − γ ) ∆t {A}n , (22)

{
Ũ
}
n+1

= {U}n + ∆t {V}n +
1
2

(∆t)2 (1 − 2β) {A}n . (23)

http://www.cirrus.ac.uk
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Fig. 21. The distribution of the pressure coefficient Cpressure = p/0.5ρf U2
∞

on the left and right side of the surface of the caudal peduncle-fin when
Kc = 2 at t = T of the flexible fin with uniform (a), heterocercal (b), W-shape (c), reverse cupping (d) and cupping (e) stiffness distribution. The
left and right are defined from the viewpoint at the posterior.

By applying Newton’s Second Law of Motion, the acceleration vector {A}n+1 in Eqs. (18) and (19) can be obtained by
solving the following equation[

M∗
]
{A}n+1 =

{
F∗
}
, (24)
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where[
M∗
]

= [M] + (1 + α) Kβ (∆t)2 , (25)

{
F∗
}

= (1 + α) {F}n+1 − α {F}n − (1 + α)KŨn+1 + αUn. (26)

It is proved that if β and γ satisfy

β =
1
4

(1 − α)2 , γ =
1
2

− α, (27)

the α-method considered yields second-order accuracy and is unconditionally stable for α ∈ [−1/3, 0] (Dhondt, 2004).
The maximum high-frequency dissipation arises if α = −1/3, while when α = 0, there is no high-frequency dissipation
and the α-method reduces to the Newmark algorithm. Here, in this study, the default value in CalculiX −0.05 is used.

Appendix B

Following the flow chart of Fig. 3, at the very beginning of the time step n, the internal state of the current time step,
i.e., the flow variablesW and grid coordinates x, are saved, which will be reloaded if current sub-iteration fails to converge.
This serves to retain the same residual equation in every sub-iteration to approximate the aforementioned inverse Jacobian
(Mehl et al., 2016). Within one time step, the structural solution snk at the interface, i.e., the displacements of the vertices
at the boundaries in coupling iteration k, which has been post-processed using the aforementioned IQN-ILS scheme, is
transformed to the fluid solver in a consistent mapping approach. With the displacements, the spring-analogy and TFI
method based grid smooth technique are performed to update the inner fluid grid. After the solution of the flow governing
equations in the current sub-iteration, the fluid forces f̃

n
k are derived from the pressure and the viscous shear stress of

the interface. They are post-processed as f nk and then transformed to the structural solver in a conservative mapping
approach. Here, the fluid forces are calculated based on each cell surface on the coupling boundaries, but represented by
a node fashion.

Through the above fixed-point iteration of the solution at the interface, the implicit coupling ensures the dynamic
equilibrium and attempts to regain the solution of a monolithic system.
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